-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathcli.py
56 lines (43 loc) · 2.99 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
def add_all_parsers(parser):
_add_loss_parser(parser)
_add_training_parser(parser)
_add_model_parser(parser)
_add_hardware_parser(parser)
_add_misc_parser(parser)
def _add_loss_parser(parser):
group_loss = parser.add_argument_group('Loss parameters')
group_loss.add_argument('--mu', type=float, default=0.0001, help='weight decay parameter')
def _add_training_parser(parser):
group_training = parser.add_argument_group('Training parameters')
group_training.add_argument('--lr', type=float, help='learning rate to use')
group_training.add_argument('--batch_size', type=int, default=32, help='default is 32')
group_training.add_argument('--n_epochs', type=int)
group_training.add_argument('--pretrained', action='store_true')
group_training.add_argument('--image_size', type=int, default=256)
group_training.add_argument('--crop_size', type=int, default=224)
group_training.add_argument('--epoch_decay', nargs='+', type=int, default=[])
group_training.add_argument('--k', nargs='+', help='value of k for computing the topk loss and computing topk accuracy',
required=True, type=int)
def _add_model_parser(parser):
group_model = parser.add_argument_group('Model parameters')
group_model.add_argument('--model', choices=['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152',
'densenet121', 'densenet161', 'densenet169', 'densenet201',
'mobilenet_v2', 'inception_v3', 'alexnet', 'squeezenet',
'shufflenet', 'wide_resnet50_2', 'wide_resnet101_2',
'vgg11', 'mobilenet_v3_large', 'mobilenet_v3_small',
'inception_resnet_v2', 'inception_v4', 'efficientnet_b0',
'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3',
'efficientnet_b4', 'vit_base_patch16_224'],
default='resnet50', help='choose the model you want to train on')
def _add_hardware_parser(parser):
group_hardware = parser.add_argument_group('Hardware parameters')
group_hardware.add_argument('--use_gpu', type=int, choices=[0, 1], default=torch.cuda.is_available())
def _add_misc_parser(parser):
group_misc = parser.add_argument_group('Miscellaneous parameters')
group_misc.add_argument('--seed', type=int, help='set the seed for reproductible experiments')
group_misc.add_argument('--num_workers', type=int, default=4,
help='number of workers for the data loader. Default is one. You can bring it up. '
'If you have memory errors go back to one')
group_misc.add_argument('--root', help='location of the train val and test directories')
group_misc.add_argument('--save_name_xp', help='name of the saving file')