-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlogreg_phil_unadjusted_no_NA_afro_cutoff1_case_controls_too.R
192 lines (121 loc) · 5.92 KB
/
logreg_phil_unadjusted_no_NA_afro_cutoff1_case_controls_too.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#Calculate cutoff by taking average of beta values in pooled normal + 0.2
#Less than cutoff is unmethylated, greater than is methylated.
#logistic regression
#If you have these SNPs what are the odds a particular probe is methylated?
SNP_list_parse <- function(string){
x <- strsplit(string, split = "-")[[1]]
y <- paste(x[1],x[2], sep=".")
return(y)
}
calc_allele_freq <- function(SNP){
x <- length(which(SNP == 0)) #AA
y <- length(which(SNP == 1)) #Aa
z <- length(which(SNP == 2)) #aa
a.freq <- (2*z + y)/(2*(x + y + z))
return(a.freq)
}
setwd("D:/Phil/adjusted_betareg/data")
unadjusted.reg.results <- read.csv("sig_reg_results_no_NA_afro.csv", stringsAsFactors=FALSE)
results.table <- unadjusted.reg.results[which(unadjusted.reg.results$ADC.or.SCC == "ADC"), ]
names(results.table)[7] <- "OR.Estimate"
N <- nrow(results.table)
results.table$OR.Estimate <- rep(0, N)
results.table$P.Value <- rep(0, N)
results.table$Prevalence <- rep(0, N)
results.table$Sample.Size <- rep(0, N)
results.table$ADC.or.SCC <- rep("", N)
sig.probes <- unique(unadjusted.reg.results$Meth.Probe.Name)
sig.SNPs <- unique(unadjusted.reg.results$SNP.ID)
sig.SNPs <- sapply(sig.SNPs, SNP_list_parse, USE.NAMES=FALSE)
setwd("D:/Phil/betareg/data")
ADC.meth.data <- read.csv("ADC_total_sig_meth_data.csv", stringsAsFactors=FALSE)
SCC.meth.data <- read.csv("SCC_total_sig_meth_data.csv", stringsAsFactors=FALSE)
#Calculate cutoffs
STN.meth.data <- read.csv("find_methylation_status_STN_data.csv", stringsAsFactors=FALSE)
STN.meth.data <- STN.meth.data[ , match(sig.probes, names(STN.meth.data))]
meth.cutoffs1 <- colMeans(STN.meth.data) + 0.2
#These cutoffs were also tested, the one above was actually used.
meth.cutoffs2 <- rep(0.25, length(sig.probes))
names(meth.cutoffs2) <- sig.probes
ADC.meth.cutoffs3 <- apply(ADC.meth.data[-(1:2)], 2, median)
SCC.meth.cutoffs3 <- apply(SCC.meth.data[-(1:2)], 2, median)
#Recode methylation data
dichotomize_meth_data <- function(meth.data, cutoffs){
N <- ncol(meth.data)
for (i in 3:N){
cutoff <- cutoffs[match(names(meth.data)[i], names(cutoffs))]
meth.data[which(meth.data[i] < cutoff), i] <- 0
meth.data[which(meth.data[i] >= cutoff), i] <- 1
}
return(meth.data)
}
ADC.meth.data.dicho <- dichotomize_meth_data(ADC.meth.data, meth.cutoffs1)
SCC.meth.data.dicho <- dichotomize_meth_data(SCC.meth.data, meth.cutoffs1)
#This chunk creates case control tables.
create_case_control_table <- function(reg.table){
N <- nrow(reg.table)
case.control.dfrm$Cases <- colSums(reg.table)
case.control.dfrm$Controls <- N - case.control.dfrm$Cases
}
setwd("D:/Phil/adjusted_betareg/data")
ADC.SNP.data <- read.csv("ADC_SNP_data_no_27k.csv", stringsAsFactors=FALSE)
SCC.SNP.data <- read.csv("SCC_SNP_data_no_27k.csv", stringsAsFactors=FALSE)
ADC.SNP.data <- ADC.SNP.data[, c(1,2,match(sig.SNPs, names(ADC.SNP.data)))]
SCC.SNP.data <- SCC.SNP.data[, c(1,2,match(sig.SNPs, names(SCC.SNP.data)))]
M <- length(sig.probes)
case.control.table <- data.frame("Meth.Probe" = sig.probes, "Controls"=rep(0,M), "Cases" = rep(0,M))
#meth.data <- ADC.meth.data.dicho
#SNP.data <- ADC.SNP.data
#reg.results.table <- results.table
#hist <- "ADC"
logistic_reg <- function(meth.data, SNP.data, reg.results.table, hist, case.control.dfrm){
#This chunk sets up results table.
N <- nrow(reg.results.table)
reg.results.table$ADC.or.SCC<- rep(hist, N)
for (i in 1:N){
meth.probe <- reg.results.table$Meth.Probe.Name[i]
SNP.ID <- reg.results.table$SNP.ID[i]
SNP.ID <- SNP_list_parse(SNP.ID)
test.pair.ind <- list(match(meth.probe, names(meth.data)), match(SNP.ID, names(SNP.data)))
if (any(is.na(unlist(test.pair.ind) == TRUE))){
reg.results.table$OR.Estimate[i] <- NA
reg.results.table$P.Value[i] <- NA
next
}
meth.binary <- meth.data[test.pair.ind[[1]]]
row.names(meth.binary) <- meth.data$patient.name
SNPx <- SNP.data[test.pair.ind[[2]]]
row.names(SNPx) <- SNP.data$patient.ID
reg.table <- merge(meth.binary, SNPx, by="row.names")
probe.ind <- match(meth.probe, case.control.dfrm$Meth.Probe)
case.control.dfrm$Cases[probe.ind] <- sum(reg.table[2])
case.control.dfrm$Controls[probe.ind] <- nrow(reg.table) - sum(reg.table[2])
reg.results.table$Sample.Size[i] <- nrow(reg.table)
a.freq <- calc_allele_freq(reg.table[3])
reg.results.table$Prevalence[i] <- a.freq
if ((a.freq == 1)|(a.freq == 0)){
reg.results.table$OR.Estimate[i] <- NA
reg.results.table$P.Value[i] <- NA
next
}
Meth_Binary <- unlist(reg.table[2], use.names=FALSE)
SNP <- unlist(reg.table[3], use.names=FALSE)
model <- glm(Meth_Binary ~ SNP, family=binomial("logit"))
reg.results.table$OR.Estimate[i] <- exp(coef(model))[2]
reg.results.table$P.Value[i] <- summary(model)$coefficients[2,4]
}
return(list(reg.results.table, case.control.dfrm))
}
x <- logistic_reg(dichotomize_meth_data(ADC.meth.data, meth.cutoffs1), ADC.SNP.data, results.table, "ADC", case.control.table)
ADC.logreg.results <- x[[1]]
ADC.case.controls <- x[[2]]
y <- logistic_reg(dichotomize_meth_data(SCC.meth.data, meth.cutoffs1), SCC.SNP.data, results.table, "SCC", case.control.table)
SCC.logreg.results <- y[[1]]
SCC.case.controls <- y[[2]]
setwd("D:/Phil/betareg/output/")
z <- rbind(ADC.logreg.results, SCC.logreg.results)
w <- cbind(rbind(ADC.case.controls, SCC.case.controls), "Histology" = c(rep("ADC", M), rep("SCC", M)))
u <- as.data.frame(t(meth.cutoffs1))
write.csv(z, "unadjusted_logreg_results_cutoff1.csv", row.names=FALSE)
write.csv(w, "unadjusted_logreg_case_controls_cutoff1.csv", row.names=FALSE)
write.csv(u, "logreg_cutoffs1.csv", row.names=FALSE)