forked from boostcampaitech2/image-classification-level1-25
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
45 lines (38 loc) · 1.23 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import json
import argparse
import os
from importlib import import_module
import numpy as np
import pandas as pd
from sklearn.metrics import classification_report
def evaluation(gt_dir, pred_dir):
"""
Args:
gt_dir (string) : root directory of ground truth file
pred_dir (string) : root directory of prediction file (output of inference.py)
"""
num_classes = 18
results = {}
gt = pd.read_csv(os.path.join(gt_dir, 'gt.csv'))
pred = pd.read_csv(os.path.join(pred_dir, 'output.csv'))
cls_report = classification_report(gt.ans.values, pred.ans.values, labels=np.arange(num_classes), output_dict=True, zero_division=0)
acc = cls_report['accuracy'] * 100
f1 = np.mean([cls_report[str(i)]['f1-score'] for i in range(num_classes)])
results['accuracy'] = {
'value': f'{acc:.2f}%',
'rank': True,
'decs': True,
}
results['f1'] = {
'value': f'{f1:.2f}%',
'rank': False,
'decs': True,
}
return json.dumps(results)
#if __name__ == '__main__':
# gt_dir = os.environ.get('SM_GROUND_TRUTH_DIR')
# pred_dir = os.environ.get('SM_OUTPUT_DATA_DIR')
#
# from pprint import pprint
# results = evaluation(gt_dir, pred_dir)
# pprint(results)