-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimg_sdf.py
70 lines (63 loc) · 2.78 KB
/
img_sdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import cv2
import numpy as np
from scipy.spatial.distance import cdist
class ImageSdf():
def __init__(self, img_path, scale = 0.05, range=(0.7, 0.7), coverage_r = 0.1):
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
assert img.shape[0] == img.shape[1] == 400, "expecting a square image of shape 400x400"
self.img_res = img.shape[0]
_, img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
kernel = np.ones((5,5),np.uint8)
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
img = 255 - img
self.sdf = cv2.distanceTransform(img, maskSize=cv2.DIST_MASK_PRECISE, distanceType=cv2.DIST_L2)
# self.sdf_img = (self.sdf/np.max(self.sdf)*255).astype(np.uint8)
# cv2.imshow('sdf_img', self.sdf_img)
# cv2.waitKey(0)
self.grad_x = np.gradient(self.sdf, axis=0)
self.grad_y = np.gradient(self.sdf, axis=1)
self.scale = scale
self.range = range
self.coverage_r = coverage_r
self.coverage_angles = np.linspace(0,2*np.pi,8)
def get_gradient(self, robot_x, robot_y):
x = int((2*robot_x/self.range[0])*200)
y = int((2*robot_y/self.range[1])*200)
x, y = max(min(x, 199), -199), max(min(y, 199), -199)
x += 200
y += 200
gx = self.grad_x[x,y]
gy = self.grad_y[x,y]
norm = (gx**2+gy**2)**0.5
return gx, gy, norm
def shape_gradient(self, robot_x, robot_y):
gx, gy, norm = self.get_gradient(robot_x, robot_y)
if norm > 0:
gx = gx/norm
gy = gy/norm
# return -gx*self.scale -self.scale*0.5*gy, -gy*self.scale +self.scale*0.5*gx
return -gx*self.scale, -gy*self.scale
else:
return 0.0, 0.0
def calculate_distances(self, curr_state):
distances = cdist(curr_state[:,:2], curr_state[:,:2])
np.fill_diagonal(distances, np.inf)
return distances
def coverage_gradient(self, robot_loc, nn_loc):
max_grad = None
max_norm = 0
for th in self.coverage_angles:
robot_x = robot_loc[0] + self.coverage_r*np.cos(th)
robot_y = robot_loc[1] + self.coverage_r*np.sin(th)
gx, gy, norm = self.get_gradient(robot_x, robot_y)
if norm > max_norm:
max_norm = norm
max_grad = [gx, gy]
dir_away = (robot_loc - nn_loc)[:2]
if max_norm > 0:
grad_dir_1 = np.asarray([-max_grad[1], max_grad[0]]) / max_norm
grad_dir_2 = np.asarray([max_grad[1], -max_grad[0]]) / max_norm
if np.dot(grad_dir_1, dir_away) > 0:
return self.scale*grad_dir_1
return self.scale*grad_dir_2