-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmodel.py
255 lines (227 loc) · 11 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import tensorflow as tf
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import losses
import time
from utils import ImageLoader
class Model(object):
def __init__(self, cfg):
self.cfg = cfg
self.tf_placeholders = {}
self.create_tf_placeholders()
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.d_train_op, self.g_train_op = None, None
self.ema_op, self.ema_vars = None, {}
self.d_loss, self.g_loss = None, None
self.gen_images, self.eval_op = None, None
self.image_loader = ImageLoader(self.cfg)
def create_tf_placeholders(self):
h, w, c = self.cfg.input_shape
z_dim = self.cfg.z_dim
z = tf.placeholder(tf.float32, [None, z_dim])
learning_rate = tf.placeholder(tf.float32)
alpha = tf.placeholder(tf.float32, shape=())
self.tf_placeholders = {'z': z,
'learning_rate': learning_rate,
'alpha': alpha}
def resize_image(self, image):
_, input_size, _, _ = image.get_shape().as_list()
res = self.cfg.resolution
if input_size == res:
return image
new_size = [res, res]
new_img = tf.image.resize_nearest_neighbor(image, size=new_size)
if self.cfg.transition:
alpha = self.tf_placeholders['alpha']
low_res_img = tf.layers.average_pooling2d(new_img, 2, 2)
low_res_img = \
tf.image.resize_nearest_neighbor(low_res_img, size=new_size)
new_img = alpha * new_img + (1. - alpha) * low_res_img
return new_img
def build_generator(self, training):
raise NotImplementedError("Not yet implemented")
def build_encoder(self, training):
raise NotImplementedError("Not yet implemented")
def build_discriminator(self, input_, reuse, training):
raise NotImplementedError("Not yet implemented")
def make_train_op(self, images):
images_real = images
tf.summary.image('images_real_original_size', images_real, 8)
images_real = self.resize_image(images_real)
tf.summary.image('images_real', images_real, 8)
d_real = self.build_discriminator(images_real, reuse=False,
training=True)
images_fake = self.build_generator(training=True)
tf.summary.image('images_fake', images_fake, 8)
d_fake = self.build_discriminator(images_fake, reuse=True,
training=True)
d_loss, g_loss = None, None
if self.cfg.loss_mode == 'js':
smooth_factor = 0.9 if self.cfg.smooth_label else 1.
d_loss, g_loss = losses.js_loss(d_real, d_fake, smooth_factor)
elif self.cfg.loss_mode == 'wgan_gp':
d_loss, g_loss = losses.wgan_loss(d_real, d_fake)
# Gradient penalty
lambda_gp = self.cfg.lambda_gp
gamma_gp = self.cfg.gamma_gp
batch_size = self.cfg.batch_size
nc = self.cfg.input_shape[-1]
res = self.cfg.resolution
input_shape = [batch_size, res, res, nc]
alpha = tf.random_uniform(shape=input_shape, minval=0., maxval=1.)
differences = images_fake - images_real
interpolates = images_real + alpha * differences
gradients = tf.gradients(
self.build_discriminator(interpolates, reuse=True, training=True),
[interpolates, ])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), axis=[1, 2, 3]))
gradient_penalty = \
lambda_gp * tf.reduce_mean((slopes / gamma_gp - 1.) ** 2)
d_loss += gradient_penalty
if self.cfg.drift_loss:
eps = self.cfg.eps_drift
drift_loss = eps * tf.reduce_mean(tf.nn.l2_loss(d_real))
d_loss += drift_loss
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
g_vars = [var for var in t_vars if var.name.startswith('generator')]
beta1 = self.cfg.beta1
beta2 = self.cfg.beta2
learning_rate = self.tf_placeholders['learning_rate']
d_solver = tf.train.AdamOptimizer(learning_rate, beta1=beta1, beta2=beta2)
g_solver = tf.train.AdamOptimizer(learning_rate, beta1=beta1, beta2=beta2)
ema = tf.train.ExponentialMovingAverage(decay=0.999)
self.ema_op = ema.apply(g_vars)
self.ema_vars = {ema.average_name(v): v for v in g_vars}
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
self.d_train_op = d_solver.minimize(d_loss, var_list=d_vars,
global_step=self.global_step)
self.g_train_op = g_solver.minimize(g_loss, var_list=g_vars)
self.d_loss, self.g_loss = d_loss, g_loss
def train(self):
""" Train the model. """
batch_size = self.cfg.batch_size
n_iters = self.cfg.n_iters
n_critic = self.cfg.n_critic
z_dim = self.cfg.z_dim
learning_rate = self.cfg.learning_rate
display_period = self.cfg.display_period
save_period = self.cfg.save_period
image_loader = self.image_loader
transition = self.cfg.transition
# paths for save directories
save_tag = '{0:}x{0:}'.format(self.cfg.resolution)
if transition:
save_tag += '_transition'
img_save_dir = os.path.join(self.cfg.image_save_dir, save_tag)
if not os.path.exists(img_save_dir):
os.makedirs(img_save_dir)
save_dir = os.path.join(self.cfg.model_save_dir, save_tag)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_dir = os.path.join(save_dir, 'model')
with tf.device("/cpu:0"):
image_batch = image_loader.create_batch_pipeline()
self.make_train_op(image_batch)
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter(os.path.join(self.cfg.summary_dir, time.strftime('%Y%m%d_%H%M%S')))
# Create ops in graph before Session is created
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
tf.train.start_queue_runners(sess)
load_model = self.cfg.load_model
if self.cfg.load_model:
self.load(sess, saver, load_model)
elif transition:
vars_to_load = []
all_vars = tf.trainable_variables()
r = self.cfg.min_resolution
while r < self.cfg.resolution:
var_scope = '{0:}x{0:}'.format(r)
vars_to_load += [v for v in all_vars if var_scope in v.name]
r *= 2
saver_restore = tf.train.Saver(vars_to_load)
tag = '{0:}x{0:}'.format(self.cfg.resolution // 2)
print(tag)
self.load(sess, saver_restore, tag=tag)
alpha = self.cfg.fade_alpha
global_step = 0
sum_g_loss, sum_d_loss = 0., 0.
# batch_gen = image_loader.batch_generator()
for i in range(self.cfg.n_iters):
batch_z = np.random.normal(0, 1, size=(batch_size, z_dim))
feed_dict = {self.tf_placeholders['z']: batch_z,
self.tf_placeholders['learning_rate']: learning_rate,
self.tf_placeholders['alpha']: alpha}
if global_step % display_period == 0:
_, global_step, d_loss, merged_res = \
sess.run([self.d_train_op, self.global_step, self.d_loss, merged],
feed_dict=feed_dict)
else:
_, global_step, d_loss = \
sess.run([self.d_train_op, self.global_step, self.d_loss],
feed_dict=feed_dict)
g_loss = 0.
if global_step % n_critic == 0:
_, _, g_loss = \
sess.run([self.g_train_op, self.ema_op, self.g_loss],
feed_dict=feed_dict)
sum_g_loss += g_loss
sum_d_loss += d_loss
if transition:
alpha_step = 1. / n_iters
alpha = min(1., self.cfg.fade_alpha+global_step*alpha_step)
if global_step % display_period == 0:
writer.add_summary(merged_res, global_step)
print("After {} iterations".format(global_step),
"Discriminator loss : {:3.5f} "
.format(sum_d_loss / display_period),
"Generator loss : {:3.5f}"
.format(sum_g_loss / display_period * n_critic))
sum_g_loss, sum_d_loss = 0., 0.
if transition:
print("Using alpha = ", alpha)
if global_step % save_period == 0:
print("Saving model in {}".format(save_dir))
saver.save(sess, save_dir, global_step)
if self.cfg.save_images:
gen_images = self.generate_images(save_tag, alpha=alpha)
plt.figure(figsize=(10, 10))
grid = image_loader.grid_batch_images(gen_images)
filename = os.path.join(img_save_dir, str(global_step) + '.png')
plt.imsave(filename, grid)
print("Saving model in {}".format(save_dir))
saver.save(sess, save_dir, global_step)
def generate_images(self, model, batch_z=None, alpha=0.):
"""Runs generator to generate images"""
batch_size = 64 # self.cfg.batch_size
z_dim = self.cfg.z_dim
if batch_z is None:
batch_z = np.random.normal(0, 1, size=(batch_size, z_dim))
# saver = tf.train.Saver(self.ema_vars)
saver = tf.train.Saver()
feed_dict = {self.tf_placeholders['z']: batch_z,
self.tf_placeholders['alpha']: alpha}
image_loader = self.image_loader
gen = self.build_generator(training=False)
with tf.Session() as sess:
self.load(sess, saver, model)
gen_images = sess.run(gen, feed_dict=feed_dict)
gen_images = image_loader.postprocess_image(gen_images)
return gen_images
def load(self, sess, saver, tag=None):
""" Load the trained model. """
if tag is None:
tag = '{0:}x{0:}'.format(self.cfg.input_shape[0])
load_dir = os.path.join(self.cfg.model_save_dir, tag, 'model')
print("Loading model...")
checkpoint = tf.train.get_checkpoint_state(os.path.dirname(load_dir))
if checkpoint is None:
print("Error: No saved model found. Please train first.")
sys.exit(0)
saver.restore(sess, checkpoint.model_checkpoint_path)