-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
278 lines (251 loc) · 12.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from __future__ import print_function
import argparse
import numpy as np
from random import shuffle
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision
import torchvision.transforms as transforms
import os
import time
from spiking_model import*
from Ncars_dataset import*
PATH_RESULTS = './results'
#init value for python script
parser = argparse.ArgumentParser()
parser.add_argument('--filenet', type=str, dest='filename_net')
parser.add_argument('--fileresult', type=str, default='result.txt', dest='filename_result')
parser.add_argument('--sample_time', type=float, default=1, dest='sample_time')
parser.add_argument('--sample_length', type=float, default=10, dest='sample_length')
parser.add_argument('--batch_size', type=int, default=40, dest='batch_size')
parser.add_argument('--lr', type=float, default=1e-3, dest='lr')
parser.add_argument('--lr_decay_epoch', type=int, default=20, dest='lr_decay')
parser.add_argument('--lr_decay_value', type=float, default=0.5, dest='lr_decay_value')
parser.add_argument('--threshold', type=float, default=0.4, dest='thresh')
parser.add_argument('--n_decay', type=float, default=0.2, dest='n_decay')
parser.add_argument('--att_window', type=int, nargs=4, dest='att_window')
parser.add_argument('--weight_decay', type=float, default=0, dest='weight_decay') #L2regularizzation
parser.add_argument('--wghbit_c0', type=int, default=32, dest='wghbit_c0')
parser.add_argument('--wghbit_c1', type=int, default=32, dest='wghbit_c1')
parser.add_argument('--wghbit_f0', type=int, default=32, dest='wghbit_f0')
parser.add_argument('--wghbit_f1', type=int, default=32, dest='wghbit_f1')
parser.add_argument('--quant', type=int, default=0, dest='quant') # 0: no quantization, 1: ptq
parser.add_argument('--tstep', type=int, default=20, dest='tstep') # timestep
args = parser.parse_args()
# initialize spiking model and network
initialize_model(args.filename_net, args.thresh, args.n_decay, 2, args.batch_size, args.lr, kernel_init_f=[args.att_window[0], args.att_window[1]])
batch_size = args.batch_size
data_path_train = './'
data_path_test = './'
data_path_results = './results/'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
samplingTime = args.sample_time
sampleLength = args.sample_length
filename_result = args.filename_result
#
wghbitC0 = args.wghbit_c0
wghbitC1 = args.wghbit_c1
wghbitF0 = args.wghbit_f0
wghbitF1 = args.wghbit_f1
#
log_gpu = os.path.join(PATH_RESULTS, '_'.join(['log',str(args.att_window[0]),str(args.att_window[1])]) + '.txt')
with open(log_gpu, "w") as log:
log.write('log_'+str(args.att_window[0])+'_'+str(args.att_window[1])+'\n')
log.write("===================================="+"\n") ###debug
log.close()
# instantiate the train dataset and use the DataLoader function to give samples to the network
trainingSet = DatasetHandler(datasetPath = data_path_train,
sampleFile_car = './N_cars/car_train.txt',
sampleFile_background = './N_cars/background_train.txt',
samplingTime = samplingTime,
sampleLength = sampleLength,
shift_x = args.att_window[2],
shift_y = args.att_window[3],
att_window = [args.att_window[0], args.att_window[1]])
train_loader = DataLoader(dataset=trainingSet, batch_size=batch_size, shuffle=True, num_workers=10)
# instantiate the test dataset and use the DataLoader function to give samples to the network
testingSet = DatasetHandler(datasetPath = data_path_test,
sampleFile_car = './N_cars/car_test.txt',
sampleFile_background = './N_cars/background_test.txt',
samplingTime = samplingTime,
sampleLength = sampleLength,
shift_x = args.att_window[2],
shift_y = args.att_window[3],
att_window = [args.att_window[0], args.att_window[1]])
test_loader = DataLoader(dataset=testingSet, batch_size=batch_size, shuffle=True, num_workers=10)
# create and open the file to write the results
file = os.path.join(data_path_results, filename_result+'.txt')
f = open(file, 'w')
# write the principal initialization information
f.write('batch_size: '+str(args.batch_size)+
' sampling_time: '+str(samplingTime)+
' sampling_length: '+str(sampleLength)+
' filenet: '+str(args.filename_net)+
' learning_rate: '+str(args.lr)+
' lr decay_epoch: '+str(args.lr_decay)+
' lr decay_value: '+str(args.lr_decay_value)+
' threashold: '+str(args.thresh)+
' neuron_decay_constant: '+str(args.n_decay)+
' attention window: '+str(args.att_window)+
' weight_decay_(L2_reg): '+str(args.weight_decay)+
' weight_bit_conv0: '+str(wghbitC0)+
' weight_bit_conv1: '+str(wghbitC1)+
' weight_bit_fc0: '+str(wghbitF0)+
' weight_bit_fc1: '+str(wghbitF1)+'\n')
# define the network and load saved weights
snn = SCNN()
snn = putWeight(snn) # this part can be used to load the weigh of a previously trained network.
snn.to(device)
#
# object for quantized model
snn_q = SCNN()
# define criterion and optimizer
criterion = nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(snn.parameters(), lr=args.lr, weight_decay=args.weight_decay, amsgrad=False) #L2r
time_start = time.time()
# run the train and test for num_epochs epochs
for epoch in range(num_epochs):
best_acc_entire_image_test = 0
running_loss = 0
start_time = time.time()
len_of_sample = len(trainingSet)
# training ------------------------------------------------
snn = snn.train()
correct_entire_image = 0 # number of correct decision after sampleLngth/samplingTime predictions then choose the most predicted
total_entire_image = 0 # number of images to predict
#
for i, (images, labels_, labels) in enumerate(train_loader,0):
# run only for complete batches
len_of_sample = len_of_sample-batch_size
if len_of_sample >= 0:
snn.zero_grad()
optimizer.zero_grad()
images = images.float().to(device)
first = 0
#
# group outputs of the same image of length sampleLength and accumulate the prediction for every samplingTime
for j in range (0, int(sampleLength/samplingTime)):
outputs = snn(images[:,:,:,:,j], args)
if first==0:
_, accumulation = outputs.to(device).max(1)
first = first+1
else:
_, predicted = outputs.max(1)
accumulation += predicted
#
loss = criterion(outputs, labels_[:,:,0,0,0].to(device))
running_loss += loss.item()
loss.backward()
optimizer.step()
#
# see what is the most predicted class for the image
accumulation[accumulation < (sampleLength/samplingTime)/2] = 0
accumulation[accumulation >= (sampleLength/samplingTime)/2] = 1
#
# calculate accuracy on the image of length sampleLength
total_entire_image += float(labels.size(0))
correct_entire_image += float(accumulation.eq(labels.to(device)).sum().item())
acc_entire_image_train = 100*correct_entire_image/total_entire_image
#
if ((i+1)%20) == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Accuracy: %.5f' %(epoch+1, num_epochs, i+1, len(trainingSet)//batch_size, running_loss, acc_entire_image_train))
running_loss = 0
print('Time elasped:', time.time()-start_time)
# testing ------------------------------------------------
correct = 0 # number of correct decision for each samplingTime
total = 0 # number of total samplingTime predictions
optimizer = lr_scheduler(optimizer, epoch, args.lr_decay, args.lr_decay_value)
correct_entire_image = 0 # number of correct decision after sampleLngth/samplingTime predictions then choose the most predicted
total_entire_image = 0 # number of images of sampleLength length
#
with torch.no_grad():
if (args.quant==1): # ptq
# post-training quantization (PTQ)
snn_q.conv[0].weight = torch.nn.Parameter(torch.floor(snn.conv[0].weight*(2**(args.wghbit_c0-1)))*(2**-(args.wghbit_c0-1)))
print('snn_q.conv[0].weight: ', str(snn_q.conv[0].weight), '\n')
#
snn_q.conv[1].weight = torch.nn.Parameter(torch.floor(snn.conv[1].weight*(2**(args.wghbit_c1-1)))*(2**-(args.wghbit_c1-1)))
print('snn_q.conv[1].weight: ', str(snn_q.conv[1].weight), '\n')
#
snn_q.fc[0].weight = torch.nn.Parameter(torch.floor(snn.fc[0].weight*(2**(args.wghbit_f0-1)))*(2**-(args.wghbit_f0-1)))
print('snn_q.fc[0].weight: ', str(snn_q.fc[0].weight), '\n')
#
snn_q.fc[1].weight = torch.nn.Parameter(torch.floor(snn.fc[1].weight*(2**(args.wghbit_f1-1)))*(2**-(args.wghbit_f1-1)))
print('snn_q.fc[1].weight: ', str(snn_q.fc[1].weight), '\n')
#
snn_q = snn_q.eval()
else: # no quant
snn = snn.eval()
len_of_sample = len(testingSet)
for batch_idx, (inputs, labels_, targets) in enumerate(test_loader,0):
# run only for the complete batch size
len_of_sample = len_of_sample-batch_size
if len_of_sample >= 0:
inputs = inputs.to(device)
optimizer.zero_grad()
first = 0
# group outputs of the same image of length sampleLength and accumulate the prediction for every samplingTime
for j in range (0, int(sampleLength/samplingTime)):
if (args.quant==1 or args.quant==2): # ptq
outputs = snn_q(inputs[:,:,:,:,j], args)
else: # no quant
outputs = snn(inputs[:,:,:,:,j], args)
#
if first==0:
_, accumulation = outputs.to(device).max(1)
first = first+1
else:
_, pre = outputs.max(1)
accumulation += pre
#
loss = criterion(outputs, labels_[:,:,0,0,0].to(device))
# calculate the prediction at every samplingTime without grouping them in an image of sampleLength length
_, predicted = outputs.max(1)
total += float(targets.size(0))
correct += float(predicted.eq(targets.to(device)).sum().item())
#
# see the most predicted class for the image of length sampleLength
accumulation[accumulation < (sampleLength/samplingTime)/2]=0
accumulation[accumulation >= (sampleLength/samplingTime)/2]=1
# calculate accuracy on the image of length sampleLength and at every samplingTime
total_entire_image += float(targets.size(0))
correct_entire_image += float(accumulation.eq(targets.to(device)).sum().item())
acc_entire_image_test = 100*correct_entire_image/total_entire_image
#
if (batch_idx%100)==0:
acc = 100. * float(correct) / float(total)
print(batch_idx, len(test_loader),' Acc: %.5f' % acc)
print('Iters:', epoch,'\n\n\n')
print('Test Accuracy of the model on the sampling time streams: %.3f' % (100 * correct / total))
print('Test Accuracy of the model on the entire test images: %.3f' % (acc_entire_image_test))
acc = 100. * float(correct) / float(total)
# save the results at the every epoch
if epoch % 1 == 0:
print(acc)
print('Saving results..')
#
f.write('acc: '+str(acc)+' acc_train: '+str(acc_entire_image_train)+' acc_test: '+str(acc_entire_image_test)+' epoch: '+str(epoch)+'\n')
#
if (args.quant==1): # ptq
state = {'net': snn_q.state_dict(),
'acc': acc,
'epoch': epoch,}
else: # no quant
state = {'net': snn.state_dict(),
'acc': acc,
'epoch': epoch,}
#
# save the network and the weights only if the accuracy on entire images is better than before
if epoch>=0 and best_acc_entire_image_test < acc_entire_image_test:
print('Saving weights and network..')
best_acc_entire_image_test=acc_entire_image_test
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt' + str(args.att_window[0])+'_ceil' + '.t7')
time_end = time.time()
time_duration = time_start-time_end
### debug: start --------
with open(log_gpu, "a") as log:
log.write('Elapsed processing time: '+str(time_duration)+' seconds')
log.write(" \n")
log.close()