forked from AhmetHamzaEmra/Intelegent_Lock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_code.py
187 lines (137 loc) · 6.39 KB
/
main_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import face_recognition
import cv2
import numpy as np
font = cv2.FONT_HERSHEY_DUPLEX
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d, avg_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
from sklearn.preprocessing import OneHotEncoder
from os import listdir
from os.path import isfile, join
live_img = ["liveness_detection/img-live/"+f for f in listdir("liveness_detection/img-live/") if isfile(join("liveness_detection/img-live/", f))]
live_label = [0 for i in range(len(live_img))]
not_live_img = ["liveness_detection/img-not-live/" + f for f in listdir("liveness_detection/img-not-live/") if isfile(join("liveness_detection/img-not-live/", f))]
not_live_label = [1 for i in range(len(not_live_img))]
print(live_img)
if live_img != [] and not_live_img != []:
print("Liveness Model finetuning!")
img = live_img + not_live_img
labels = live_label+ not_live_label
images=[]
for i in img:
img = cv2.imread(i, 0)
img = cv2.resize(img, (100,100))
images.append(img)
X = np.array(images, dtype=float)
y = np.array(labels, dtype=float)
y= y.reshape((-1,1))
X = X.reshape((-1,100,100,1))
X /= 255
Oneencoder = OneHotEncoder()
y = Oneencoder.fit_transform(y)
print("Data is ready!")
print("Training is starting!")
# Building convolutional network
network = input_data(shape=[None, 100, 100, 1], name='input')
network = conv_2d(network, 32, 5, activation='relu')
network = avg_pool_2d(network, 2)
network = conv_2d(network, 64, 5, activation='relu')
network = avg_pool_2d(network, 2)
network = fully_connected(network, 128, activation='relu')
network = fully_connected(network, 64, activation='relu')
network = fully_connected(network, 2, activation='softmax',restore=False)
network = regression(network, optimizer='adam', learning_rate=0.0001,
loss='categorical_crossentropy', name='target')
model = tflearn.DNN(network, tensorboard_verbose=0)
model.load('model/my_model.tflearn')
model.fit(X, y.toarray(), n_epoch=3, validation_set=0.1, shuffle=True,
show_metric=True, batch_size=32, snapshot_step=100,
snapshot_epoch=False, run_id='model_finetuning')
# # uncomment this part if you want to save finetuned model
# model.save('model/my_model.tflearn')
print("Finetuning is DONE!")
print("Liveness Model is ready!")
else:
# Building convolutional network
network = input_data(shape=[None, 100, 100, 1], name='input')
network = conv_2d(network, 32, 5, activation='relu')
network = avg_pool_2d(network, 2)
network = conv_2d(network, 64, 5, activation='relu')
network = avg_pool_2d(network, 2)
network = fully_connected(network, 128, activation='relu')
network = fully_connected(network, 64, activation='relu')
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
model = tflearn.DNN(network, tensorboard_verbose=0)
model.load('model/my_model.tflearn')
print("Liveness Model is ready!")
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
hamza_image = face_recognition.load_image_file("hamza.jpg")
hamza_face_encoding = face_recognition.face_encodings(hamza_image)[0]
known_names = ['HAMZA']
known_encods = [hamza_face_encoding]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
liveimg = cv2.resize(frame, (100,100))
liveimg = cv2.cvtColor(liveimg, cv2.COLOR_BGR2GRAY)
liveimg = np.array([liveimg/255])
liveimg = liveimg.reshape((-1,100,100,1))
pred = model.predict(liveimg)
if pred[0][0]> .75:
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(small_frame)
face_encodings = face_recognition.face_encodings(small_frame, face_locations)
name = "Unknown"
face_names = []
for face_encoding in face_encodings:
for ii in range(len(known_encods)):
# See if the face is a match for the known face(s)
match = face_recognition.compare_faces([known_encods[ii]], face_encoding)
if match[0]:
name = known_names[ii]
face_names.append(name)
process_this_frame = not process_this_frame
unlock = False
for n in face_names:
if n != 'Unknown':
unlock=True
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
if unlock:
cv2.putText(frame, 'UNLOCK', (frame.shape[1]//2, frame.shape[0]//2), font, 1.0, (255, 255, 255), 1)
else:
cv2.putText(frame, 'LOCKED!', (frame.shape[1]//2, frame.shape[0]//2), font, 1.0, (255, 255, 255), 1)
else:
cv2.putText(frame, 'WARNING!', (frame.shape[1]//2, frame.shape[0]//2), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()