diff --git a/LGLMF/recommendation.py b/LGLMF/recommendation.py index e799ea5..1ddfb4b 100644 --- a/LGLMF/recommendation.py +++ b/LGLMF/recommendation.py @@ -12,27 +12,11 @@ def read_training_data(): train_data = open(train_file, 'r').readlines() training_tuples = set() - visited_lids = defaultdict(set) for eachline in train_data: uid, lid, _ = eachline.strip().split() uid, lid, = int(uid), int(lid) training_tuples.add((uid, lid)) - visited_lids[uid].add(lid) - - check_in_data = open(check_in_file, 'r').readlines() - training_tuples_with_time = defaultdict(int) - for eachline in check_in_data: - uid, lid, ctime = eachline.strip().split() - uid, lid, ctime = int(uid), int(lid), float(ctime) - if (uid, lid) in training_tuples: - hour = time.gmtime(ctime).tm_hour - training_tuples_with_time[(hour, uid, lid)] += 1.0 - - # Default setting: time is partitioned to 24 hours. - sparse_training_matrices = [sparse.dok_matrix((user_num, poi_num)) for _ in range(24)] - for (hour, uid, lid), freq in training_tuples_with_time.items(): - sparse_training_matrices[hour][uid, lid] = 1.0 / (1.0 + 1.0 / freq) - return sparse_training_matrices, training_tuples, visited_lids + return training_tuples def read_ground_truth(): @@ -46,7 +30,7 @@ def read_ground_truth(): def main(): - sparse_training_matrices, training_tuples, visited_lids = read_training_data() + training_tuples = read_training_data() ground_truth = read_ground_truth() start_time = time.time()