diff --git a/python/cuml/cuml/tests/test_arima.py b/python/cuml/cuml/tests/test_arima.py index 7c16ef3774..f96def4d04 100644 --- a/python/cuml/cuml/tests/test_arima.py +++ b/python/cuml/cuml/tests/test_arima.py @@ -36,7 +36,10 @@ from cuml.internals.safe_imports import gpu_only_import import statsmodels.api as sm from sklearn.model_selection import train_test_split -from cuml.internals.safe_imports import cpu_only_import_from +from cuml.internals.safe_imports import ( + cpu_only_import_from, + gpu_only_import_from, +) import warnings import os import pytest @@ -49,6 +52,7 @@ approx_fprime = cpu_only_import_from("scipy.optimize", "approx_fprime") cudf = gpu_only_import("cudf") +cudf_pandas_active = gpu_only_import_from("cudf.pandas", "LOADED") ############################################################################### @@ -410,6 +414,11 @@ def fill_interpolation(df_in): @pytest.mark.parametrize("dtype", [np.float64]) def test_integration(key, data, dtype): """Full integration test: estimate, fit, forecast""" + if ( + data.dataset == "endog_hourly_earnings_by_industry_missing_exog" + and cudf_pandas_active + ): + pytest.skip(reason="https://github.com/rapidsai/cuml/issues/6209") order, seasonal_order, intercept = extract_order(key) s = max(1, seasonal_order[3]) diff --git a/python/cuml/cuml/tests/test_linear_model.py b/python/cuml/cuml/tests/test_linear_model.py index 7960d4f0f8..559bfc96c3 100644 --- a/python/cuml/cuml/tests/test_linear_model.py +++ b/python/cuml/cuml/tests/test_linear_model.py @@ -1,4 +1,4 @@ -# Copyright (c) 2019-2024, NVIDIA CORPORATION. +# Copyright (c) 2019-2025, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -629,7 +629,7 @@ def test_logistic_regression_model_default(dtype): @given( - dtype=floating_dtypes(sizes=(32, 64)), + dtype=st.sampled_from((np.float32, np.float64)), order=st.sampled_from(("C", "F")), sparse_input=st.booleans(), fit_intercept=st.booleans(), @@ -661,7 +661,7 @@ def test_logistic_regression_model_digits( assert score >= acceptable_score -@given(dtype=floating_dtypes(sizes=(32, 64))) +@given(dtype=st.sampled_from((np.float32, np.float64))) def test_logistic_regression_sparse_only(dtype, nlp_20news): # sklearn score with max_iter = 10000 @@ -685,7 +685,7 @@ def test_logistic_regression_sparse_only(dtype, nlp_20news): @given( dataset=split_datasets( standard_classification_datasets( - dtypes=floating_dtypes(sizes=(32, 64)), + dtypes=st.sampled_from((np.float32, np.float64)), n_classes=st.sampled_from((2, 10)), n_features=st.just(20), n_informative=st.just(10), @@ -727,7 +727,7 @@ def test_logistic_regression_decision_function( @given( dataset=split_datasets( standard_classification_datasets( - dtypes=floating_dtypes(sizes=(32, 64)), + dtypes=st.sampled_from((np.float32, np.float64)), n_classes=st.sampled_from((2, 10)), n_features=st.just(20), n_informative=st.just(10),