-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcoll_rates.f
234 lines (213 loc) · 7.95 KB
/
coll_rates.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
c=======================================================================
c///////////////////// SUBROUTINE COLL_RATES \\\\\\\\\\\\\\\\\\\\\\\\c
SUBROUTINE coll_rates(T, k1, k2, k3, k4, k5, k6, k7, k8, k9,
$ k10, k11, k12, k13, k14, k15, k16, k17, k18, k19,
$ recombinationType)
c
c COMPUTE MULTISPECIES COLLISIONAL RATES
c
c written by: Tom Abel
c date:
c modified1: Feb, 2000 by Greg Bryan; adapted to AMR
c modified2: 2005 by Alexei Razoumov; adapted to FTTE
c
c PURPOSE:
c Computes various collisional rates (from Tom Abels web page)
c
c UNITS:
c cgs / kunit (kunit is a normalizing factor)
c
c PARAMETERS:
c
c INPUTS:
C T is the gas temperature in Kelvin
c kunit is a normalizing factor that (i.e. outputted rates are
c cgs / kunit).
c
c OUTPUTS:
c k1-k19: rates as given below
c
C the coefficient numbering is as in Abel etal 1997, NewA, 2.
C ---1:-- HI + e -> HII + 2e
C ---2:-- HII + e -> H + p
C ---3:-- HeI + e -> HeII + 2e
C ---4:-- HeII + e -> HeI + p
C ---5:-- HeII + e -> HeIII + 2e
C ---6:-- HeIII + e -> HeII + p
C ---7:-- HI + e -> HM + p
C ---8:-- HM + HI -> H2I* + e
C ---9:-- HI + HII -> H2II + p
C ---10-- H2II + HI -> H2I* + HII
C ---11-- H2I + HII -> H2II + H
C ---12-- H2I + e -> 2HI + e
C ---13-- H2I + H -> 3H
C ---14-- HM + e -> HI + 2e
C ---15-- HM + HI -> 2H + e
C ---16-- HM + HII -> 2HI
C ---17-- HM + HII -> H2II + e
C ---18-- H2II + e -> 2HI
C ---19-- H2II + HM -> HI + H2I
c
c-----------------------------------------------------------------------
c
implicit NONE
double precision k1, k2, k3, k4, k5, k6, k7, k8, k9,
& k10, k11, k12, k13, k14, k15, k16, k17, k18, k19
double precision T
integer recombinationType, i, caseA, caseB
double precision log_T, log_T_eV, T_ev, xx, dum, tmp
parameter (caseA = 1, caseB = 2)
C ------- Compute various values of T.
log_T = LOG(T)
T_eV = T/11605.
log_T_eV = log(T_eV)
IF (T_eV .GT. 0.8) THEN
! HI collisional ionization rate
k1 = exp(-32.71396786375
& + 13.53655609057*log_T_eV
& - 5.739328757388*log_T_eV**2
& + 1.563154982022*log_T_eV**3
& - 0.2877056004391*log_T_eV**4
& + 0.03482559773736999*log_T_eV**5
& - 0.00263197617559*log_T_eV**6
& + 0.0001119543953861*log_T_eV**7
& - 2.039149852002e-6*log_T_eV**8)
! HeI collisional ionization rate
k3 = exp(-44.09864886561001
& + 23.91596563469*log_T_eV
& - 10.75323019821*log_T_eV**2
& + 3.058038757198*log_T_eV**3
& - 0.5685118909884001*log_T_eV**4
& + 0.06795391233790001*log_T_eV**5
& - 0.005009056101857001*log_T_eV**6
& + 0.0002067236157507*log_T_eV**7
& - 3.649161410833e-6*log_T_eV**8)
! HeII collisional ionization rate
k5 = exp(-68.71040990212001
& + 43.93347632635*log_T_eV
& - 18.48066993568*log_T_eV**2
& + 4.701626486759002*log_T_eV**3
& - 0.7692466334492*log_T_eV**4
& + 0.08113042097303*log_T_eV**5
& - 0.005324020628287001*log_T_eV**6
& + 0.0001975705312221*log_T_eV**7
& - 3.165581065665e-6*log_T_eV**8)
ELSE
k1 = 1.0e-20
k3 = 1.0e-20
k5 = 1.0e-20
ENDIF
! recombination HeII -> HeI
if (recombinationType.eq.caseA) then ! case A - from abel...97
IF (T_eV .GT. 0.8) THEN
k4 = (1.54e-9*(1.+0.3/exp(8.099328789667/T_eV))
& / (exp(40.49664394833662/T_eV)*T_eV**1.5)
& + 3.92e-13/T_eV**0.6353)
else
k4 = 3.92e-13/T_eV**0.6353
endif
else ! case B - from hui.97
tmp = 2. * 24.587 * 1.60217646d-12 / (1.3806503d-16 * T)
k4 = 1.26e-14*tmp**0.750 ! [cm^3/s]
endif
! HII recombination rate
if (recombinationType.eq.caseA) then ! case A - from abel...97
IF ( T .GT. 5500.0 ) THEN
k2 = exp(-28.61303380689232
& - 0.7241125657826851*log_T_eV
& - 0.02026044731984691*log_T_eV**2
& - 0.002380861877349834*log_T_eV**3
& - 0.0003212605213188796*log_T_eV**4
& - 0.00001421502914054107*log_T_eV**5
& + 4.989108920299513e-6*log_T_eV**6
& + 5.755614137575758e-7*log_T_eV**7
& - 1.856767039775261e-8*log_T_eV**8
& - 3.071135243196595e-9*log_T_eV**9)
ELSE
k2 = k4
ENDIF
else ! case B - from hui.97
tmp = 2. * 13.598 * 1.60217646d-12 / (1.3806503d-16 * T)
k2 = 2.753e-14*tmp**1.500/(1.+(tmp/2.740)**0.407)**2.242 ! [cm^3/s]
endif
! recombination HeIII -> HeII
if (recombinationType.eq.caseA) then ! case A - from abel...97
k6 = 3.36e-10/sqrt(T)/(T/1.e3)**0.2/(1.+(T/1.e6)**0.7)
else ! case B - from hui.97
tmp = 2. * 54.418 * 1.60217646d-12 / (1.3806503d-16 * T)
k6 = 2.*2.753e-14*tmp**1.500/(1.+(tmp/2.740)**0.407)**2.242 ! [cm^3/s]
endif
k7 = 6.77e-15*T_eV**0.8779
IF (T_eV .GT. 0.1) THEN
k8 = exp(-20.06913897587003
& + 0.2289800603272916*log_T_eV
& + 0.03599837721023835*log_T_eV**2
& - 0.004555120027032095*log_T_eV**3
& - 0.0003105115447124016*log_T_eV**4
& + 0.0001073294010367247*log_T_eV**5
& - 8.36671960467864e-6*log_T_eV**6
& + 2.238306228891639e-7*log_T_eV**7)
ELSE
k8 = 1.43e-9
ENDIF
k9 = 1.85e-23*T**1.8
IF (T .GT. 6.7e3)
& k9 = 5.81e-16*(T/56200.)**(-0.6657*log10(T/56200.))
k10 = 6.0e-10
IF (T_eV .GT. 0.3) THEN
k13 = 1.0670825e-10*T_eV**2.012/
& (exp(4.463/T_eV)*(1+0.2472*T_eV)**3.512)
k11 = exp(-24.24914687731536
& + 3.400824447095291*log_T_eV
& - 3.898003964650152*log_T_eV**2
& + 2.045587822403071*log_T_eV**3
& - 0.5416182856220388*log_T_eV**4
& + 0.0841077503763412*log_T_eV**5
& - 0.007879026154483455*log_T_eV**6
& + 0.0004138398421504563*log_T_eV**7
& - 9.36345888928611e-6*log_T_eV**8)
C k12 = 4.38e-10*exp(-102000.0/T)*T**0.35
k12 = 5.6e-11*exp(-102124/T)*T**0.5
ELSE
k13 = 1.0e-20
k11 = 1.0e-20
k12 = 1.0e-20
ENDIF
IF (T_eV .GT. 0.04) THEN
k14 = exp(-18.01849334273
& + 2.360852208681*log_T_eV
& - 0.2827443061704*log_T_eV**2
& + 0.01623316639567*log_T_eV**3
& - 0.03365012031362999*log_T_eV**4
& + 0.01178329782711*log_T_eV**5
& - 0.001656194699504*log_T_eV**6
& + 0.0001068275202678*log_T_eV**7
& - 2.631285809207e-6*log_T_eV**8)
ELSE
k14 = 1.0e-20
ENDIF
IF (T_eV .GT. 0.1) THEN
k15 = exp(-20.37260896533324
& + 1.139449335841631*log_T_eV
& - 0.1421013521554148*log_T_eV**2
& + 0.00846445538663*log_T_eV**3
& - 0.0014327641212992*log_T_eV**4
& + 0.0002012250284791*log_T_eV**5
& + 0.0000866396324309*log_T_eV**6
& - 0.00002585009680264*log_T_eV**7
& + 2.4555011970392e-6*log_T_eV**8
& - 8.06838246118e-8*log_T_eV**9)
ELSE
k15 = 2.56e-9*T_eV**1.78186
ENDIF
k16 = 6.5e-9/sqrt(T_eV)
k17 = 1.0e-8*T**(-0.4)
IF (T .GT. 1.0e4)
& k17=4.0e-4*T**(-1.4)*exp(-15100.0/T)
C k18 = 5.56396e-8/T_eV**0.6035
k18 = 1.e-8
If (T .GT. 617.)
$ k18 = 1.32e-6 * T**(-0.76)
k19 = 5.e-7*sqrt(100./T)
RETURN
END