-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_discrete.py
129 lines (103 loc) · 3.79 KB
/
main_discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
'''Main function to train discrete BGAN.
'''
import logging
import lasagne
import numpy as np
import theano
import theano.tensor as T
from lib.data import load_stream
from lib.log_util import set_stream_logger
from lib.loss import get_losses_discrete
from lib.math import est_log_Z
from lib.train import setup, train
from lib.utils import config, make_argument_parser, print_section, setup_out_dir
from lib.viz import setup as setup_viz
from models import build
logger = logging.getLogger('BGAN')
def main(data_args=None, optimizer_args=None, model_args=None, loss_args=None,
train_args=None):
'''Main function for discrete BGAN.
'''
print_section('LOADING DATA') ##############################################
train_stream, training_samples, shape, viz_options = load_stream(
**data_args)
train_args['training_samples'] = training_samples
setup_viz(**viz_options)
model_args.update(**shape)
loss_args.update(**shape)
loss_args['batch_size'] = data_args['batch_size']
print_section('MODEL') #####################################################
noise_var = T.matrix('noise')
input_var = T.tensor4('inputs')
log_Z = theano.shared(lasagne.utils.floatX(0.), name='log_Z')
loss_args['loss_options'] = loss_args.get('loss_options', None) or {}
loss_args['loss_options']['log_Z'] = log_Z
logger.info('Building model and compiling GAN functions...')
logger.info('Model args: {}'.format(model_args))
generator, discriminator = build(noise_var, input_var, **model_args)
g_output_logit = lasagne.layers.get_output(generator)
g_results, d_results, log_Z_est = get_losses_discrete(
discriminator, g_output_logit, optimizer_args=optimizer_args,
**loss_args)
g_results.update(**{
'log Z': log_Z,
'log Z (est)': log_Z_est.mean()
})
print_section('OPTIMIZER') #################################################
train_d, train_g, gen = setup(input_var, noise_var, log_Z, generator,
discriminator, g_results, d_results,
discrete=True, **optimizer_args)
print_section('TRAIN') #####################################################
try:
train(train_d, train_g, gen, train_stream, **train_args)
except KeyboardInterrupt:
logger.info('Training interrupted')
print_section('DONE') ##################################################
exit(0)
_default_args = dict(
data_args=dict(
batch_size=64,
discrete=True,
downsample_to=(32, 32)
),
optimizer_args=dict(
optimizer='adam',
optimizer_options=dict(beta1=0.5),
learning_rate=1e-4,
),
model_args=dict(
arch='dcgan_28_pub',
dim_z=64,
dim_h=64,
leak=0.2,
use_batch_norm=False
),
loss_args=dict(
loss='binary_bgan',
n_samples=20
),
train_args=dict(
epochs=100,
num_iter_gen=1,
num_iter_disc=1,
summary_updates=None,
archive_every=10
)
)
if __name__ == '__main__':
parser = make_argument_parser()
args = parser.parse_args()
set_stream_logger(args.verbosity)
kwargs = {}
for k, v in _default_args.items():
kwargs[k] = {}
kwargs[k].update(**v)
kwargs['data_args']['source'] = args.source
if args.architecture is not None:
kwargs['model_args']['arch'] = args.architecture
out_paths = setup_out_dir(args.out_path, args.name)
kwargs['train_args'].update(**out_paths)
config(config_file=args.config_file, **kwargs)
kwargs['train_args']['batch_size'] = kwargs['data_args']['batch_size']
kwargs['train_args']['dim_z'] = kwargs['model_args']['dim_z']
main(**kwargs)