You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
eeedl@eeedl-OptiPlex-7040:~$ cortex-rbm-demo
Loading experiment from /home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/rbm_mnist.yaml
Experiment hyperparams: {'dataset_args': {'dataset': 'mnist',
'source': '$data/basic/mnist_binarized_salakhutdinov.pkl.gz'},
'dim_h': 200,
'inference_args': {'n_chains': 10, 'n_steps': 1, 'persistent': True},
'learning_args': {'epochs': 1000, 'learning_rate': 0.01, 'optimizer': 'sgd'},
'name': 'rbm_mnist',
'test_every': 10}
Saving to /home/eeedl/cortex/program/rbm_mnist
Dataset args: {'dataset': 'mnist',
'source': '$data/basic/mnist_binarized_salakhutdinov.pkl.gz'}
Learning args: {'batch_size': 100,
'epochs': 1000,
'excludes': [],
'learning_rate': 0.01,
'learning_rate_schedule': None,
'optimizer': 'sgd',
'optimizer_args': {},
'valid_batch_size': 100,
'valid_key': 'nll',
'valid_sign': '+'}
Inference args: {'n_chains': 10, 'n_steps': 1, 'persistent': True}
---Setting up data--------------------------------------------------------------------------------------------------------------------------------------
Loading mnist (train) from /home/eeedl/cortex/program/basic/mnist_binarized_salakhutdinov.pkl.gz
Loading mnist (valid) from /home/eeedl/cortex/program/basic/mnist_binarized_salakhutdinov.pkl.gz
---Setting model and variables--------------------------------------------------------------------------------------------------------------------------
---Loading model and forming graph----------------------------------------------------------------------------------------------------------------------
Print profile for tparams (name, shape)
rbm_W (784, 200)
rbm_visible_z (784,)
rbm_hidden_z (200,)
---Getting cost-----------------------------------------------------------------------------------------------------------------------------------------
---Test functions---------------------------------------------------------------------------------------------------------------------------------------
---Setting final tparams and save function--------------------------------------------------------------------------------------------------------------
Learned model params: ['rbm_W', 'rbm_visible_z', 'rbm_hidden_z']
Saved params: ['rbm_W', 'rbm_visible_z', 'rbm_hidden_z']
---Getting gradients and building optimizer.------------------------------------------------------------------------------------------------------------
Traceback (most recent call last):
File "/home/eeedl/anaconda2/bin/cortex-rbm-demo", line 11, in
load_entry_point('cortex==0.12a0', 'console_scripts', 'cortex-rbm-demo')()
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/demos/demos_basic/init.py", line 30, in run_rbm_demo
run_demo(yaml_file, train)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/demos/demos_basic/init.py", line 18, in run_demo
train(**exp_dict)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/demos/demos_basic/rbm_mnist.py", line 167, in train
[X], cost, tparams, constants, updates, extra_outs, **learning_args)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/utils/training.py", line 291, in set_optimizer
extra_outs=extra_outs, **optimizer_args)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/utils/op.py", line 301, in sgd
f_update = theano.function(lr, [], updates=pup, profile=profile)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/theano/compile/function.py", line 326, in function
output_keys=output_keys)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/theano/compile/pfunc.py", line 449, in pfunc
no_default_updates=no_default_updates)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/theano/compile/pfunc.py", line 208, in rebuild_collect_shared
**# **# __raise TypeError(err_msg, err_sug)
TypeError: ('An update must have the same type as the original shared variable (shared_var=W, shared_var.type=TensorType(float32, matrix), update_val=Elemwise{sub,no_inplace}.0, update_val.type=TensorType(float64, matrix)).', 'If the difference is related to the broadcast pattern, you can call the tensor.unbroadcast(var, axis_to_unbroadcast[, ...]) function to remove broadcastable dimensions.')****
and I use theano 0.9.0.
The text was updated successfully, but these errors were encountered:
when I run demos it appears problem like this:
eeedl@eeedl-OptiPlex-7040:~$ cortex-rbm-demo
Loading experiment from /home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/rbm_mnist.yaml
Experiment hyperparams: {'dataset_args': {'dataset': 'mnist',
'source': '$data/basic/mnist_binarized_salakhutdinov.pkl.gz'},
'dim_h': 200,
'inference_args': {'n_chains': 10, 'n_steps': 1, 'persistent': True},
'learning_args': {'epochs': 1000, 'learning_rate': 0.01, 'optimizer': 'sgd'},
'name': 'rbm_mnist',
'test_every': 10}
Saving to /home/eeedl/cortex/program/rbm_mnist
Dataset args: {'dataset': 'mnist',
'source': '$data/basic/mnist_binarized_salakhutdinov.pkl.gz'}
Learning args: {'batch_size': 100,
'epochs': 1000,
'excludes': [],
'learning_rate': 0.01,
'learning_rate_schedule': None,
'optimizer': 'sgd',
'optimizer_args': {},
'valid_batch_size': 100,
'valid_key': 'nll',
'valid_sign': '+'}
Inference args: {'n_chains': 10, 'n_steps': 1, 'persistent': True}
---Setting up data--------------------------------------------------------------------------------------------------------------------------------------
Loading mnist (train) from /home/eeedl/cortex/program/basic/mnist_binarized_salakhutdinov.pkl.gz
Loading mnist (valid) from /home/eeedl/cortex/program/basic/mnist_binarized_salakhutdinov.pkl.gz
---Setting model and variables--------------------------------------------------------------------------------------------------------------------------
---Loading model and forming graph----------------------------------------------------------------------------------------------------------------------
Print profile for tparams (name, shape)
rbm_W (784, 200)
rbm_visible_z (784,)
rbm_hidden_z (200,)
---Getting cost-----------------------------------------------------------------------------------------------------------------------------------------
---Test functions---------------------------------------------------------------------------------------------------------------------------------------
---Setting final tparams and save function--------------------------------------------------------------------------------------------------------------
Learned model params: ['rbm_W', 'rbm_visible_z', 'rbm_hidden_z']
Saved params: ['rbm_W', 'rbm_visible_z', 'rbm_hidden_z']
---Getting gradients and building optimizer.------------------------------------------------------------------------------------------------------------
Traceback (most recent call last):
File "/home/eeedl/anaconda2/bin/cortex-rbm-demo", line 11, in
load_entry_point('cortex==0.12a0', 'console_scripts', 'cortex-rbm-demo')()
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/demos/demos_basic/init.py", line 30, in run_rbm_demo
run_demo(yaml_file, train)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/demos/demos_basic/init.py", line 18, in run_demo
train(**exp_dict)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/demos/demos_basic/rbm_mnist.py", line 167, in train
[X], cost, tparams, constants, updates, extra_outs, **learning_args)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/utils/training.py", line 291, in set_optimizer
extra_outs=extra_outs, **optimizer_args)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/cortex-0.12a0-py2.7.egg/cortex/utils/op.py", line 301, in sgd
f_update = theano.function(lr, [], updates=pup, profile=profile)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/theano/compile/function.py", line 326, in function
output_keys=output_keys)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/theano/compile/pfunc.py", line 449, in pfunc
no_default_updates=no_default_updates)
File "/home/eeedl/anaconda2/lib/python2.7/site-packages/theano/compile/pfunc.py", line 208, in rebuild_collect_shared
TypeError: ('An update must have the same type as the original shared variable (shared_var=W, shared_var.type=TensorType(float32, matrix), update_val=Elemwise{sub,no_inplace}.0, update_val.type=TensorType(float64, matrix)).', 'If the difference is related to the broadcast pattern, you can call the tensor.unbroadcast(var, axis_to_unbroadcast[, ...]) function to remove broadcastable dimensions.')****
and I use theano 0.9.0.
The text was updated successfully, but these errors were encountered: