forked from mathematiguy/gans-and-wgans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBibliography.bib
140 lines (132 loc) · 4.96 KB
/
Bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
@inproceedings{NIPS2014_5ca3e9b1,
author = {Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
booktitle = {Advances in Neural Information Processing Systems},
editor = {Z. Ghahramani and M. Welling and C. Cortes and N. Lawrence and K.Q. Weinberger},
pages = {},
publisher = {Curran Associates, Inc.},
title = {Generative Adversarial Nets},
url = {https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf},
volume = {27},
year = {2014}
}
@article{denton2015deep,
title={Deep generative image models using a laplacian pyramid of adversarial networks},
author={Denton, Emily L and Chintala, Soumith and Fergus, Rob and others},
journal={Advances in neural information processing systems},
volume={28},
year={2015}
}
@article{creswell2018generative,
title={Generative adversarial networks: An overview},
author={Creswell, Antonia and White, Tom and Dumoulin, Vincent and Arulkumaran, Kai and Sengupta, Biswa and Bharath, Anil A},
journal={IEEE signal processing magazine},
volume={35},
number={1},
pages={53--65},
year={2018},
publisher={IEEE}
}
@article{radford2015unsupervised,
title={Unsupervised representation learning with deep convolutional generative adversarial networks},
author={Radford, Alec and Metz, Luke and Chintala, Soumith},
journal={arXiv preprint arXiv:1511.06434},
year={2015}
}
@article{salimans2016improved,
title={Improved techniques for training gans},
author={Salimans, Tim and Goodfellow, Ian and Zaremba, Wojciech and Cheung, Vicki and Radford, Alec and Chen, Xi},
journal={Advances in neural information processing systems},
volume={29},
year={2016}
}
@book{prince2023understanding,
author = "Simon J.D. Prince",
title = "Understanding Deep Learning",
publisher = "MIT Press",
year = 2023,
url = "https://udlbook.github.io/udlbook/"
}
@article{arjovsky2017towards,
title={Towards principled methods for training generative adversarial networks},
author={Arjovsky, Martin and Bottou, L{\'e}on},
journal={arXiv preprint arXiv:1701.04862},
year={2017}
}
@article{DBLP:journals/corr/abs-1904-08994,
author = {Lilian Weng},
title = {From {GAN} to {WGAN}},
journal = {CoRR},
volume = {abs/1904.08994},
year = {2019},
url = {http://arxiv.org/abs/1904.08994},
eprinttype = {arXiv},
eprint = {1904.08994},
timestamp = {Fri, 26 Apr 2019 13:18:53 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1904-08994.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{arjovsky2017wasserstein,
title={Wasserstein generative adversarial networks},
author={Arjovsky, Martin and Chintala, Soumith and Bottou, L{\'e}on},
booktitle={International conference on machine learning},
pages={214--223},
year={2017},
organization={PMLR}
}
@article{peyre2017computational,
title={Computational optimal transport},
author={Peyr{\'e}, Gabriel and Cuturi, Marco and others},
journal={Center for Research in Economics and Statistics Working Papers},
number={2017-86},
year={2017}
}
@article{carlini2023extracting,
title={Extracting training data from diffusion models},
author={Carlini, Nicholas and Hayes, Jamie and Nasr, Milad and Jagielski, Matthew and Sehwag, Vikash and Tram{\`e}r, Florian and Balle, Borja and Ippolito, Daphne and Wallace, Eric},
journal={arXiv preprint arXiv:2301.13188},
year={2023}
}
@inproceedings{rombach2022high,
title={High-resolution image synthesis with latent diffusion models},
author={Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj{\"o}rn},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={10684--10695},
year={2022}
}
@misc{alammar2022diffusion,
title={The Illustrated Stable Diffusion},
author={Alammar, J},
year={2022},
url={https://jalammar.github.io/illustrated-stable-diffusion/}
}
@book{villani2009optimal,
title={Optimal transport: old and new},
author={Villani, C{\'e}dric and others},
volume={338},
year={2009},
publisher={Springer}
}
@article{santambrogio2015optimal,
title={Optimal transport for applied mathematicians},
author={Santambrogio, Filippo},
journal={Birk{\"a}user, NY},
volume={55},
number={58-63},
pages={94},
year={2015},
publisher={Springer}
}
@book{ambrosio2005gradient,
title={Gradient flows: in metric spaces and in the space of probability measures},
author={Ambrosio, Luigi and Gigli, Nicola and Savar{\'e}, Giuseppe},
year={2005},
publisher={Springer Science \& Business Media}
}
@inproceedings{dominitz2008computation,
title={On the computation of optimal transport maps using gradient flows and multiresolution analysis},
author={Dominitz, Ayelet and Angenent, Sigurd and Tannenbaum, Allen},
booktitle={Recent advances in learning and control},
pages={65--78},
year={2008},
organization={Springer}
}