-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasis.cpp
223 lines (196 loc) · 8.77 KB
/
basis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include <basis.hpp>
#include <linalg.hpp>
#include <comm.hpp>
#include <build_tree.hpp>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
template <typename T>
void memcpy2d(T* dst, const T* src, int64_t rows, int64_t cols, int64_t ld_dst, int64_t ld_src) {
if (rows == ld_dst && rows == ld_src)
std::copy(src, src + rows * cols, dst);
else
for (int64_t i = 0; i < cols; i++)
std::copy(&src[i * ld_src], &src[i * ld_src + rows], &dst[i * ld_dst]);
}
int64_t generate_far(int64_t flen, int64_t far[], int64_t ngbs, const int64_t ngbs_body[], const int64_t ngbs_len[], int64_t nbody) {
int64_t near = 0;
for (int64_t i = 0; i < ngbs; i++)
near = near + ngbs_len[i];
int64_t avail = nbody - near;
flen = avail < flen ? avail : flen;
for (int64_t i = 0; i < flen; i++)
far[i] = (double)(i * avail) / flen;
int64_t* begin = far;
int64_t slen = 0;
for (int64_t i = 0; i < ngbs; i++) {
int64_t bound = ngbs_body[i] - slen;
int64_t* next = begin;
while (next != far + flen && *next < bound)
next = next + 1;
for (int64_t* p = begin; p != next; p++)
*p = *p + slen;
begin = next;
slen = slen + ngbs_len[i];
}
for (int64_t* p = begin; p != far + flen; p++)
*p = *p + near;
return flen;
}
void buildBasis(const EvalDouble& eval, Base basis[], Cell* cells, const CSR* rel_near, int64_t levels,
const CellComm* comm, const double* bodies, int64_t nbodies, int64_t mrank, int64_t sp_pts, int64_t alignment) {
for (int64_t l = levels; l >= 0; l--) {
int64_t xlen = 0, ibegin = 0, nodes = 0;
content_length(&nodes, &xlen, &ibegin, &comm[l]);
int64_t iend = ibegin + nodes;
basis[l].Dims = std::vector<int64_t>(xlen, 0);
basis[l].DimsLr = std::vector<int64_t>(xlen, 0);
Matrix* arr_m = (Matrix*)calloc(xlen * 2, sizeof(Matrix));
basis[l].Uo = arr_m;
basis[l].R = &arr_m[xlen];
std::vector<int64_t> celli(xlen, 0);
for (int64_t i = 0; i < xlen; i++) {
int64_t childi = std::get<0>(comm[l].LocalChild[i]);
int64_t clen = std::get<1>(comm[l].LocalChild[i]);
int64_t gi = comm[l].iGlobal(i);
celli[i] = gi;
if (childi >= 0 && l < levels)
for (int64_t j = 0; j < clen; j++)
basis[l].Dims[i] = basis[l].Dims[i] + basis[l + 1].DimsLr[childi + j];
else
basis[l].Dims[i] = cells[celli[i]].Body[1] - cells[celli[i]].Body[0];
}
int64_t seg_dim = neighbor_bcast_sizes_cpu(&basis[l].Dims[0], &comm[l]);
int64_t seg_skeletons = 3 * seg_dim;
int64_t seg_matrix = seg_dim * seg_dim * 2;
std::vector<double> Skeletons(xlen * seg_skeletons, 0.);
std::vector<double> matrix_data(nodes * seg_matrix, 0.);
if (l < levels) {
int64_t seg = basis[l + 1].dimS;
for (int64_t i = 0; i < nodes; i++) {
int64_t childi = std::get<0>(comm[l].LocalChild[i + ibegin]);
int64_t clen = std::get<1>(comm[l].LocalChild[i + ibegin]);
int64_t y = 0;
for (int64_t j = 0; j < clen; j++) {
int64_t len = basis[l + 1].DimsLr[childi + j];
memcpy(&Skeletons[(i + ibegin) * seg_skeletons + y * 3], &basis[l + 1].M[(childi + j) * seg * 3], len * 3 * sizeof(double));
memcpy2d(&matrix_data[i * seg_matrix + y * (seg_dim + 1)],
&basis[l + 1].R_cpu[(childi + j) * seg * seg], len, len, seg_dim, seg);
y = y + len;
}
}
neighbor_bcast_cpu(&Skeletons[0], seg_skeletons, &comm[l]);
dup_bcast_cpu(&Skeletons[0], seg_skeletons * xlen, &comm[l]);
}
else
for (int64_t i = 0; i < xlen; i++) {
int64_t len = cells[celli[i]].Body[1] - cells[celli[i]].Body[0];
int64_t offset = 3 * cells[celli[i]].Body[0];
memcpy(&Skeletons[i * seg_skeletons], &bodies[offset], len * 3 * sizeof(double));
if (ibegin <= i && i < iend)
for (int64_t j = 0; j < len; j++)
matrix_data[seg_matrix * (i - ibegin) + j * (seg_dim + 1)] = 1.;
}
for (int64_t i = 0; i < nodes; i++) {
int64_t ske_len = basis[l].Dims[i + ibegin];
double* mat = &matrix_data[seg_matrix * i];
double* Xbodies = &Skeletons[(i + ibegin) * seg_skeletons];
int64_t ci = celli[i + ibegin];
int64_t nbegin = rel_near->RowIndex[ci];
int64_t nlen = rel_near->RowIndex[ci + 1] - nbegin;
const int64_t* ngbs = &rel_near->ColIndex[nbegin];
std::vector<double> Cbodies;
std::vector<int64_t> remote(sp_pts), body(nlen), lens(nlen);
for (int64_t j = 0; j < nlen; j++) {
int64_t cj = ngbs[j];
body[j] = cells[cj].Body[0];
lens[j] = cells[cj].Body[1] - cells[cj].Body[0];
if (cj != ci) {
int64_t lj = comm[l].iLocal(cj);
int64_t len = 3 * basis[l].Dims[lj];
Cbodies.insert(Cbodies.end(), &Skeletons[lj * seg_skeletons], &Skeletons[lj * seg_skeletons + len]);
}
}
int64_t len_f = generate_far(sp_pts, &remote[0], nlen, &body[0], &lens[0], nbodies);
std::vector<double> Fbodies(len_f * 3);
for (int64_t j = 0; j < len_f; j++)
for (int64_t k = 0; k < 3; k++)
Fbodies[j * 3 + k] = bodies[remote[j] * 3 + k];
compute_basis(eval, mrank, ske_len, mat, seg_dim, &Xbodies[0], Cbodies.size() / 3, &Cbodies[0], Fbodies.size() / 3, &Fbodies[0]);
basis[l].DimsLr[i + ibegin] = std::min(mrank, ske_len);
}
neighbor_bcast_sizes_cpu(basis[l].DimsLr.data(), &comm[l]);
int64_t max[3] = { 0, 0, 0 };
for (int64_t i = 0; i < xlen; i++) {
int64_t i1 = basis[l].DimsLr[i];
int64_t i2 = basis[l].Dims[i] - basis[l].DimsLr[i];
int64_t rem1 = i1 & (alignment - 1);
int64_t rem2 = i2 & (alignment - 1);
i1 = std::max(alignment, i1 - rem1 + (rem1 ? alignment : 0));
i2 = std::max(alignment, i2 - rem2 + (rem2 ? alignment : 0));
max[0] = std::max(max[0], i1);
max[1] = std::max(max[1], i2);
max[2] = std::max(max[2], std::get<1>(comm[l].LocalChild[i]));
}
MPI_Allreduce(MPI_IN_PLACE, max, 3, MPI_INT64_T, MPI_MAX, MPI_COMM_WORLD);
basis[l].dimN = std::max(max[0] + max[1], basis[l + 1].dimS * max[2]);
basis[l].dimS = max[0];
basis[l].dimR = basis[l].dimN - basis[l].dimS;
int64_t stride = basis[l].dimN * basis[l].dimN;
int64_t stride_r = basis[l].dimS * basis[l].dimS;
int64_t LD = basis[l].dimN;
basis[l].M = (double*)calloc(basis[l].dimS * xlen * 3, sizeof(double));
basis[l].U = (double*)calloc(stride * xlen + nodes * basis[l].dimR, sizeof(double));
basis[l].R_cpu = (double*)calloc(stride_r * xlen, sizeof(double));
for (int64_t i = 0; i < xlen; i++) {
double* M_ptr = basis[l].M + i * basis[l].dimS * 3;
double* Uc_ptr = basis[l].U + i * stride;
double* Uo_ptr = Uc_ptr + basis[l].dimR * basis[l].dimN;
double* R_ptr = basis[l].R_cpu + i * stride_r;
int64_t Nc = basis[l].Dims[i] - basis[l].DimsLr[i];
int64_t No = basis[l].DimsLr[i];
int64_t M = basis[l].Dims[i];
if (ibegin <= i && i < iend) {
int64_t child = std::get<0>(comm[l].LocalChild[i]);
int64_t clen = std::get<1>(comm[l].LocalChild[i]);
if (child >= 0 && l < levels) {
int64_t row = 0;
for (int64_t j = 0; j < clen; j++) {
int64_t N = basis[l + 1].DimsLr[child + j];
int64_t Urow = j * basis[l + 1].dimS;
memcpy2d(&Uc_ptr[Urow], &matrix_data[(i - ibegin) * seg_matrix + No * seg_dim + row], N, Nc, LD, seg_dim);
memcpy2d(&Uo_ptr[Urow], &matrix_data[(i - ibegin) * seg_matrix + row], N, No, LD, seg_dim);
row = row + N;
}
}
else {
memcpy2d(Uc_ptr, &matrix_data[(i - ibegin) * seg_matrix + No * seg_dim], M, Nc, LD, seg_dim);
memcpy2d(Uo_ptr, &matrix_data[(i - ibegin) * seg_matrix], M, No, LD, seg_dim);
}
memcpy2d(R_ptr, &matrix_data[(i - ibegin) * seg_matrix + M * seg_dim], No, No, basis[l].dimS, seg_dim);
memcpy(M_ptr, &Skeletons[i * seg_skeletons], 3 * No * sizeof(double));
double* Ui_ptr = basis[l].U + xlen * stride + (i - ibegin) * basis[l].dimR;
for (int64_t j = Nc; j < basis[l].dimR; j++)
Ui_ptr[j] = 1.;
}
basis[l].Uo[i] = (Matrix) { Uo_ptr, basis[l].dimN, basis[l].dimS, basis[l].dimN };
basis[l].R[i] = (Matrix) { R_ptr, basis[l].dimS, basis[l].dimS, basis[l].dimS };
}
neighbor_bcast_cpu(basis[l].M, 3 * basis[l].dimS, &comm[l]);
dup_bcast_cpu(basis[l].M, 3 * basis[l].dimS * xlen, &comm[l]);
neighbor_bcast_cpu(basis[l].U, stride, &comm[l]);
dup_bcast_cpu(basis[l].U, stride * xlen, &comm[l]);
neighbor_bcast_cpu(basis[l].R_cpu, stride_r, &comm[l]);
dup_bcast_cpu(basis[l].R_cpu, stride_r * xlen, &comm[l]);
}
}
void basis_free(Base* basis) {
free(basis->Uo);
if (basis->M)
free(basis->M);
if (basis->U)
free(basis->U);
if (basis->R_cpu)
free(basis->R_cpu);
}