-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_tree.cpp
244 lines (209 loc) · 7.32 KB
/
build_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include <build_tree.hpp>
#include <kernel.hpp>
#include <linalg.hpp>
#include <comm.hpp>
#include <basis.hpp>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <array>
void get_bounds(const double* bodies, int64_t nbodies, double R[], double C[]) {
double Xmin[3];
double Xmax[3];
Xmin[0] = Xmax[0] = bodies[0];
Xmin[1] = Xmax[1] = bodies[1];
Xmin[2] = Xmax[2] = bodies[2];
for (int64_t i = 1; i < nbodies; i++) {
const double* x_bi = &bodies[i * 3];
Xmin[0] = fmin(x_bi[0], Xmin[0]);
Xmin[1] = fmin(x_bi[1], Xmin[1]);
Xmin[2] = fmin(x_bi[2], Xmin[2]);
Xmax[0] = fmax(x_bi[0], Xmax[0]);
Xmax[1] = fmax(x_bi[1], Xmax[1]);
Xmax[2] = fmax(x_bi[2], Xmax[2]);
}
C[0] = (Xmin[0] + Xmax[0]) / 2.;
C[1] = (Xmin[1] + Xmax[1]) / 2.;
C[2] = (Xmin[2] + Xmax[2]) / 2.;
double d0 = Xmax[0] - Xmin[0];
double d1 = Xmax[1] - Xmin[1];
double d2 = Xmax[2] - Xmin[2];
R[0] = (d0 == 0. && Xmin[0] == 0.) ? 0. : (1.e-8 + d0 / 2.);
R[1] = (d1 == 0. && Xmin[1] == 0.) ? 0. : (1.e-8 + d1 / 2.);
R[2] = (d2 == 0. && Xmin[2] == 0.) ? 0. : (1.e-8 + d2 / 2.);
}
void sort_bodies(double* bodies, int64_t nbodies, int64_t sdim) {
std::array<double, 3>* bodies3 = reinterpret_cast<std::array<double, 3>*>(bodies);
std::array<double, 3>* bodies3_end = reinterpret_cast<std::array<double, 3>*>(&bodies[3 * nbodies]);
std::sort(bodies3, bodies3_end, [=](std::array<double, 3>& i, std::array<double, 3>& j)->bool {
double x = i[sdim];
double y = j[sdim];
return x < y;
});
}
int admis_check(double theta, const double C1[], const double C2[], const double R1[], const double R2[]) {
double dCi[3];
dCi[0] = C1[0] - C2[0];
dCi[1] = C1[1] - C2[1];
dCi[2] = C1[2] - C2[2];
dCi[0] = dCi[0] * dCi[0];
dCi[1] = dCi[1] * dCi[1];
dCi[2] = dCi[2] * dCi[2];
double dRi[3];
dRi[0] = R1[0] * R1[0];
dRi[1] = R1[1] * R1[1];
dRi[2] = R1[2] * R1[2];
double dRj[3];
dRj[0] = R2[0] * R2[0];
dRj[1] = R2[1] * R2[1];
dRj[2] = R2[2] * R2[2];
double dC = dCi[0] + dCi[1] + dCi[2];
double dR = (dRi[0] + dRi[1] + dRi[2] + dRj[0] + dRj[1] + dRj[2]) * theta;
return (int)(dC > dR);
}
void buildTree(int64_t* ncells, Cell* cells, double* bodies, int64_t nbodies, int64_t levels) {
Cell* root = &cells[0];
root->Body[0] = 0;
root->Body[1] = nbodies;
root->Level = 0;
get_bounds(bodies, nbodies, root->R, root->C);
int64_t len = 1;
int64_t i = 0;
while (i < len) {
Cell* ci = &cells[i];
ci->Child[0] = -1;
ci->Child[1] = -1;
if (ci->Level < levels) {
int64_t sdim = 0;
double maxR = ci->R[0];
if (ci->R[1] > maxR)
{ sdim = 1; maxR = ci->R[1]; }
if (ci->R[2] > maxR)
{ sdim = 2; maxR = ci->R[2]; }
int64_t i_begin = ci->Body[0];
int64_t i_end = ci->Body[1];
int64_t nbody_i = i_end - i_begin;
sort_bodies(&bodies[i_begin * 3], nbody_i, sdim);
int64_t loc = i_begin + nbody_i / 2;
Cell* c0 = &cells[len];
Cell* c1 = &cells[len + 1];
ci->Child[0] = len;
ci->Child[1] = len + 2;
len = len + 2;
c0->Body[0] = i_begin;
c0->Body[1] = loc;
c1->Body[0] = loc;
c1->Body[1] = i_end;
c0->Level = ci->Level + 1;
c1->Level = ci->Level + 1;
get_bounds(&bodies[i_begin * 3], loc - i_begin, c0->R, c0->C);
get_bounds(&bodies[loc * 3], i_end - loc, c1->R, c1->C);
}
i++;
}
*ncells = len;
}
void getList(char NoF, int64_t* len, int64_t rels[], int64_t ncells, const Cell cells[], int64_t i, int64_t j, double theta) {
const Cell* Ci = &cells[i];
const Cell* Cj = &cells[j];
int64_t ilevel = Ci->Level;
int64_t jlevel = Cj->Level;
if (ilevel == jlevel) {
int admis = admis_check(theta, Ci->C, Cj->C, Ci->R, Cj->R);
int write_far = NoF == 'F' || NoF == 'f';
int write_near = NoF == 'N' || NoF == 'n';
if (admis ? write_far : write_near) {
int64_t n = *len;
rels[n] = i + j * ncells;
*len = n + 1;
}
if (admis)
return;
}
if (ilevel <= jlevel && Ci->Child[0] >= 0)
for (int64_t k = Ci->Child[0]; k < Ci->Child[1]; k++)
getList(NoF, len, rels, ncells, cells, k, j, theta);
else if (jlevel <= ilevel && Cj->Child[0] >= 0)
for (int64_t k = Cj->Child[0]; k < Cj->Child[1]; k++)
getList(NoF, len, rels, ncells, cells, i, k, theta);
}
void traverse(char NoF, CSR* rels, int64_t ncells, const Cell* cells, double theta) {
rels->M = ncells;
rels->N = ncells;
std::vector<int64_t> rel_arr(ncells * ncells);
int64_t len = 0;
getList(NoF, &len, &rel_arr[0], ncells, cells, 0, 0, theta);
std::sort(rel_arr.begin(), rel_arr.begin() + len);
rels->RowIndex.resize(ncells + 1);
rels->ColIndex.resize(len);
int64_t loc = -1;
for (int64_t i = 0; i < len; i++) {
int64_t r = rel_arr[i];
int64_t x = r / ncells;
int64_t y = r - x * ncells;
rels->ColIndex[i] = y;
while (x > loc)
rels->RowIndex[++loc] = i;
}
for (int64_t i = loc + 1; i <= ncells; i++)
rels->RowIndex[i] = len;
}
void countMaxIJ(int64_t* max_i, int64_t* max_j, const CSR* rels) {
std::vector<int64_t> countx(rels->N, 0), county(rels->M, 0);
for (int64_t x = 0; x < rels->N; x++)
for (int64_t yx = rels->RowIndex[x]; yx < rels->RowIndex[x + 1]; yx++) {
int64_t y = rels->ColIndex[yx];
countx[x] = countx[x] + 1;
county[y] = county[y] + 1;
}
if (max_i)
*max_i = *std::max_element(county.begin(), county.end());
if (max_j)
*max_j = *std::max_element(countx.begin(), countx.end());
}
void loadX(double* X, int64_t seg, const double Xbodies[], int64_t Xbegin, int64_t ncells, const Cell cells[]) {
for (int64_t i = 0; i < ncells; i++) {
int64_t b0 = cells[i].Body[0] - Xbegin;
int64_t lenB = cells[i].Body[1] - cells[i].Body[0];
for (int64_t j = 0; j < lenB; j++)
X[i * seg + j] = Xbodies[j + b0];
}
}
void evalD(const EvalDouble& eval, Matrix* D, const CSR* rels, const Cell* cells, const double* bodies, const CellComm* comm) {
int64_t ibegin = 0, nodes = 0;
content_length(&nodes, NULL, &ibegin, comm);
ibegin = comm->iGlobal(ibegin);
for (int64_t i = 0; i < nodes; i++) {
int64_t lc = ibegin + i;
const Cell* ci = &cells[lc];
int64_t nbegin = rels->RowIndex[lc];
int64_t nlen = rels->RowIndex[lc + 1] - nbegin;
const int64_t* ngbs = &rels->ColIndex[nbegin];
int64_t x_begin = ci->Body[0];
int64_t n = ci->Body[1] - x_begin;
int64_t offsetD = nbegin - rels->RowIndex[ibegin];
for (int64_t j = 0; j < nlen; j++) {
int64_t lj = ngbs[j];
const Cell* cj = &cells[lj];
int64_t y_begin = cj->Body[0];
int64_t m = cj->Body[1] - y_begin;
gen_matrix(eval, n, m, &bodies[x_begin * 3], &bodies[y_begin * 3], D[offsetD + j].A, D[offsetD + j].LDA);
}
}
}
void evalS(const EvalDouble& eval, Matrix* S, const Base* basis, const CSR* rels, const CellComm* comm) {
int64_t ibegin = 0;
content_length(NULL, NULL, &ibegin, comm);
int64_t seg = basis->dimS * 3;
for (int64_t x = 0; x < rels->N; x++) {
int64_t n = basis->DimsLr[x + ibegin];
for (int64_t yx = rels->RowIndex[x]; yx < rels->RowIndex[x + 1]; yx++) {
int64_t y = rels->ColIndex[yx];
int64_t m = basis->DimsLr[y];
gen_matrix(eval, n, m, &basis->M[(x + ibegin) * seg], &basis->M[y * seg], S[yx].A, S[yx].LDA);
mul_AS(&basis->R[x + ibegin], &basis->R[y], &S[yx]);
}
}
}