-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeometry.hpp
198 lines (176 loc) · 6.16 KB
/
geometry.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <fstream>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
void uniform_unit_cube(double* bodies, int64_t nbodies, int64_t dim) {
int64_t side = ceil(pow(nbodies, 1. / dim));
int64_t lens[3] = { dim > 0 ? side : 1, dim > 1 ? side : 1, dim > 2 ? side : 1 };
double step = 1. / side;
for (int64_t i = 0; i < lens[0]; ++i)
for (int64_t j = 0; j < lens[1]; ++j)
for (int64_t k = 0; k < lens[2]; ++k) {
int64_t x = k + lens[2] * (j + lens[1] * i);
if (x < nbodies) {
bodies[x * 3] = i * step;
bodies[x * 3 + 1] = j * step;
bodies[x * 3 + 2] = k * step;
}
}
}
void uniform_unit_cube_rnd(double* bodies, int64_t nbodies, int64_t dim, unsigned int seed) {
if (seed > 0)
srand(seed);
for (int64_t i = 0; i < nbodies; i++) {
double r0 = dim > 0 ? ((double)rand() / RAND_MAX) : 0.;
double r1 = dim > 1 ? ((double)rand() / RAND_MAX) : 0.;
double r2 = dim > 2 ? ((double)rand() / RAND_MAX) : 0.;
bodies[i * 3] = r0;
bodies[i * 3 + 1] = r1;
bodies[i * 3 + 2] = r2;
}
}
void mesh_unit_cube(double* bodies, int64_t nbodies) {
if (nbodies < 8) {
std::cerr << "Error cubic mesh size (GT/EQ. 8 required): %" << nbodies << "." << std::endl;
return;
}
// compute splits: solution to 6x^2 + 12x + 8 = nbodies.
int64_t x_lower_bound = (int64_t)floor(sqrt(6 * nbodies - 12) / 6 - 1);
int64_t x_splits[3] = { x_lower_bound, x_lower_bound, x_lower_bound };
for (int64_t i = 0; i < 3; i++) {
int64_t x = x_splits[0];
int64_t y = x_splits[1];
int64_t z = x_splits[2];
int64_t mesh_points = 8 + 4 * x + 4 * y + 4 * z + 2 * x * y + 2 * x * z + 2 * y * z;
if (mesh_points < nbodies)
x_splits[i] = x_splits[i] + 1;
}
int64_t lens[7] = { 8, 4 * x_splits[0], 4 * x_splits[1], 4 * x_splits[2],
2 * x_splits[0] * x_splits[1], 2 * x_splits[0] * x_splits[2], 2 * x_splits[1] * x_splits[2] };
double segment_x = 2. / (1. + x_splits[0]);
double segment_y = 2. / (1. + x_splits[1]);
double segment_z = 2. / (1. + x_splits[2]);
for (int64_t i = 0; i < nbodies; i++) {
int64_t region = 0;
int64_t ri = i;
while (region < 6 && ri >= lens[region]) {
ri = ri - lens[region];
region = region + 1;
}
switch (region) {
case 0: { // Vertex
bodies[i * 3] = (double)(1 - 2 * ((ri & 4) >> 2));
bodies[i * 3 + 1] = (double)(1 - 2 * ((ri & 2) >> 1));
bodies[i * 3 + 2] = (double)(1 - 2 * (ri & 1));
break;
}
case 1: { // edges parallel to X-axis
bodies[i * 3] = -1 + ((ri >> 2) + 1) * segment_x;
bodies[i * 3 + 1] = (double)(1 - 2 * ((ri & 2) >> 1));
bodies[i * 3 + 2] = (double)(1 - 2 * (ri & 1));
break;
}
case 2: { // edges parallel to Y-axis
bodies[i * 3] = (double)(1 - 2 * ((ri & 2) >> 1));
bodies[i * 3 + 1] = -1 + ((ri >> 2) + 1) * segment_y;
bodies[i * 3 + 2] = (double)(1 - 2 * (ri & 1));
break;
}
case 3: { // edges parallel to Z-axis
bodies[i * 3] = (double)(1 - 2 * ((ri & 2) >> 1));
bodies[i * 3 + 1] = (double)(1 - 2 * (ri & 1));
bodies[i * 3 + 2] = -1 + ((ri >> 2) + 1) * segment_z;
break;
}
case 4: { // surface parallel to X-Y plane
int64_t x = (ri >> 1) / x_splits[1];
int64_t y = (ri >> 1) - x * x_splits[1];
bodies[i * 3] = -1 + (x + 1) * segment_x;
bodies[i * 3 + 1] = -1 + (y + 1) * segment_y;
bodies[i * 3 + 2] = (double)(1 - 2 * (ri & 1));
break;
}
case 5: { // surface parallel to X-Z plane
int64_t x = (ri >> 1) / x_splits[2];
int64_t z = (ri >> 1) - x * x_splits[2];
bodies[i * 3] = -1 + (x + 1) * segment_x;
bodies[i * 3 + 1] = (double)(1 - 2 * (ri & 1));
bodies[i * 3 + 2] = -1 + (z + 1) * segment_z;
break;
}
case 6: { // surface parallel to Y-Z plane
int64_t y = (ri >> 1) / x_splits[2];
int64_t z = (ri >> 1) - y * x_splits[2];
bodies[i * 3] = (double)(1 - 2 * (ri & 1));
bodies[i * 3 + 1] = -1 + (y + 1) * segment_y;
bodies[i * 3 + 2] = -1 + (z + 1) * segment_z;
break;
}
default:
break;
}
}
}
void mesh_unit_sphere(double* bodies, int64_t nbodies) {
const double phi = M_PI * (3. - std::sqrt(5.)); // golden angle in radians
for (int64_t i = 0; i < nbodies; i++) {
const double y = 1. - ((double)i / ((double)nbodies - 1)) * 2.; // y goes from 1 to -1
// Note: setting constant radius = 1 will produce a cylindrical shape
const double radius = std::sqrt(1. - y * y); // radius at y
const double theta = (double)i * phi;
const double x = radius * std::cos(theta);
const double z = radius * std::sin(theta);
bodies[i * 3] = x;
bodies[i * 3 + 1] = y;
bodies[i * 3 + 2] = z;
}
}
void magnify_reloc(double* bodies, int64_t nbodies, const double Ccur[], const double Cnew[], const double R[], double alpha) {
double Ra[3];
for (int64_t i = 0; i < 3; i++)
Ra[i] = R[i] * alpha;
for (int64_t i = 0; i < nbodies; i++) {
double* x_bi = &bodies[i * 3];
x_bi[0] = Cnew[0] + Ra[0] * (x_bi[0] - Ccur[0]);
x_bi[1] = Cnew[1] + Ra[1] * (x_bi[1] - Ccur[1]);
x_bi[2] = Cnew[2] + Ra[2] * (x_bi[2] - Ccur[2]);
}
}
void body_neutral_charge(double X[], int64_t nbodies, double cmax, unsigned int seed) {
if (seed > 0)
srand(seed);
double cmax2 = cmax * 2;
for (int64_t i = 0; i < nbodies; i++)
X[i] = ((double)rand() / RAND_MAX) * cmax2 - cmax;
}
void read_sorted_bodies(int64_t* nbodies, int64_t lbuckets, double* bodies, int64_t buckets[], const char* fname) {
std::ifstream file(fname);
int64_t curr = 1, cbegin = 0, iter = 0, len = *nbodies;
while (iter < len && !file.eof()) {
int64_t b = 0;
double x = 0., y = 0., z = 0.;
file >> x >> y >> z >> b;
if (lbuckets < b)
len = iter;
else if (!file.eof()) {
bodies[iter * 3] = x;
bodies[iter * 3 + 1] = y;
bodies[iter * 3 + 2] = z;
while (curr < b && curr <= lbuckets) {
buckets[curr - 1] = iter - cbegin;
cbegin = iter;
curr++;
}
iter++;
}
}
while (curr <= lbuckets) {
buckets[curr - 1] = iter - cbegin;
cbegin = iter;
curr++;
}
*nbodies = iter;
}