-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlorasp.cpp
209 lines (169 loc) · 7.16 KB
/
lorasp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include <basis.hpp>
#include <build_tree.hpp>
#include <comm.hpp>
#include <gpu_linalg.hpp>
#include <linalg.hpp>
#include <umv.hpp>
#include <geometry.hpp>
#include <kernel.hpp>
#include <profile.hpp>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main(int argc, char* argv[]) {
cudaStream_t stream = (cudaStream_t)init_libs(&argc, &argv);
double prog_time = MPI_Wtime();
int64_t Nbody = argc > 1 ? atol(argv[1]) : 8192;
double theta = argc > 2 ? atof(argv[2]) : 1e0;
int64_t leaf_size = argc > 3 ? atol(argv[3]) : 256;
int64_t rank_max = argc > 4 ? atol(argv[4]) : 100;
int64_t sp_pts = argc > 5 ? atol(argv[5]) : Nbody;
const char* fname = argc > 6 ? argv[6] : NULL;
leaf_size = Nbody < leaf_size ? Nbody : leaf_size;
int64_t levels = (int64_t)log2((double)Nbody / leaf_size);
int64_t Nleaf = (int64_t)1 << levels;
int64_t ncells = Nleaf + Nleaf - 1;
Laplace3D eval(1.);
//Yukawa3D eval(1.e-6, 1.);
//Gaussian eval(20);
double* body = (double*)malloc(sizeof(double) * Nbody * 3);
double* Xbody = (double*)malloc(sizeof(double) * Nbody);
Cell* cell = (Cell*)calloc(ncells, sizeof(Cell));
CSR cellNear, cellFar;
CSR* rels_far = (CSR*)calloc(levels + 1, sizeof(CSR));
CSR* rels_near = (CSR*)calloc(levels + 1, sizeof(CSR));
CellComm* cell_comm = (CellComm*)calloc(levels + 1, sizeof(CellComm));
Base* basis = (Base*)calloc(levels + 1, sizeof(Base));
Node* nodes = (Node*)malloc(sizeof(Node) * (levels + 1));
if (fname == NULL) {
mesh_unit_sphere(body, Nbody);
//mesh_unit_cube(body, Nbody);
//uniform_unit_cube(body, Nbody, 1);
double c[3] = { 0, 0, 0 };
double r[3] = { 1, 1, 1 };
magnify_reloc(body, Nbody, c, c, r, sqrt(Nbody));
buildTree(&ncells, cell, body, Nbody, levels);
}
else {
int64_t* buckets = (int64_t*)malloc(sizeof(int64_t) * Nleaf);
read_sorted_bodies(&Nbody, Nleaf, body, buckets, fname);
buildTree(&ncells, cell, body, Nbody, levels);
free(buckets);
}
body_neutral_charge(Xbody, Nbody, 1., 999);
traverse('N', &cellNear, ncells, cell, theta);
traverse('F', &cellFar, ncells, cell, theta);
CommTimer timer;
buildComm(cell_comm, ncells, cell, &cellFar, &cellNear, levels);
for (int64_t i = 0; i <= levels; i++) {
cell_comm[i].stream = stream;
cell_comm[i].timer = &timer;
}
relations(rels_near, &cellNear, levels, cell_comm);
relations(rels_far, &cellFar, levels, cell_comm);
int64_t lbegin = 0, llen = 0;
content_length(&llen, NULL, &lbegin, &cell_comm[levels]);
int64_t gbegin = cell_comm[levels].iGlobal(lbegin);
MPI_Barrier(MPI_COMM_WORLD);
double construct_time = MPI_Wtime(), construct_comm_time;
buildBasis(eval, basis, cell, &cellNear, levels, cell_comm, body, Nbody, rank_max, sp_pts, 4);
MPI_Barrier(MPI_COMM_WORLD);
construct_time = MPI_Wtime() - construct_time;
construct_comm_time = timer.get_comm_timing();
double* Workspace = NULL;
int64_t Lwork = 0;
allocNodes(nodes, &Workspace, &Lwork, basis, rels_near, rels_far, cell_comm, levels);
evalD(eval, nodes[levels].A, &cellNear, cell, body, &cell_comm[levels]);
for (int64_t i = 0; i <= levels; i++)
evalS(eval, nodes[i].S, &basis[i], &rels_far[i], &cell_comm[i]);
int64_t lenX = rels_near[levels].N * basis[levels].dimN;
double* X1 = (double*)calloc(lenX, sizeof(double));
double* X2 = (double*)calloc(lenX, sizeof(double));
loadX(X2, basis[levels].dimN, Xbody, 0, llen, &cell[gbegin]);
double matvec_time = MPI_Wtime(), matvec_comm_time;
matVecA(nodes, basis, rels_near, X2, cell_comm, levels);
matvec_time = MPI_Wtime() - matvec_time;
matvec_comm_time = timer.get_comm_timing();
double cerr = 0.;
int64_t body_local[2] = { cell[gbegin].Body[0], cell[gbegin + llen - 1].Body[1] };
mat_vec_reference(eval, body_local[0], body_local[1], &X1[0], Nbody, body, Xbody);
solveRelErr(&cerr, X1, X2, lenX);
factorA_mov_mem(nodes, levels);
MPI_Barrier(MPI_COMM_WORLD);
double factor_time = MPI_Wtime(), factor_comm_time;
for (int64_t i = levels; i > 0; i--)
batchCholeskyFactor(&nodes[i].params, &cell_comm[i]);
chol_decomp(&nodes[0].params, &cell_comm[0]);
cudaStreamSynchronize(stream);
MPI_Barrier(MPI_COMM_WORLD);
factor_time = MPI_Wtime() - factor_time;
factor_comm_time = timer.get_comm_timing();
Profile profile;
for (int64_t i = 1; i <= levels; i++)
profile.record_factor(basis[i].dimR, basis[i].dimN, nodes[i].params.L_nnz, nodes[i].params.L_diag, nodes[i].params.L_rows);
profile.record_factor(basis[0].dimR, basis[0].dimN, 1, 1, 1);
int64_t factor_flops[4], mem_A[3];
profile.get_profile(factor_flops, mem_A);
MPI_Allreduce(MPI_IN_PLACE, factor_flops, 4, MPI_INT64_T, MPI_SUM, MPI_COMM_WORLD);
int64_t sum_flops = factor_flops[0] + factor_flops[1] + factor_flops[2];
double percent[3];
for (int i = 0; i < 3; i++)
percent[i] = (double)factor_flops[i] / (double)sum_flops * (double)100;
cudaMemcpy(&nodes[levels].X_ptr[lbegin * basis[levels].dimN], X1, lenX * sizeof(double), cudaMemcpyHostToDevice);
MPI_Barrier(MPI_COMM_WORLD);
double solve_time = MPI_Wtime(), solve_comm_time;
for (int64_t i = levels; i > 0; i--)
batchForwardULV(&nodes[i].params, &cell_comm[i]);
chol_solve(&nodes[0].params, &cell_comm[0]);
for (int64_t i = 1; i <= levels; i++)
batchBackwardULV(&nodes[i].params, &cell_comm[i]);
cudaStreamSynchronize(stream);
MPI_Barrier(MPI_COMM_WORLD);
solve_time = MPI_Wtime() - solve_time;
solve_comm_time = timer.get_comm_timing();
cudaMemcpy(X1, &nodes[levels].X_ptr[lbegin * basis[levels].dimN], lenX * sizeof(double), cudaMemcpyDeviceToHost);
loadX(X2, basis[levels].dimN, Xbody, 0, llen, &cell[gbegin]);
double err;
solveRelErr(&err, X1, X2, lenX);
int mpi_rank, mpi_size;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
prog_time = MPI_Wtime() - prog_time;
if (mpi_rank == 0)
printf("LORASP: %d,%d,%lf,%d,%d\n"
"Construct: %lf s. COMM: %lf s.\n"
"Mat-Vec: %lf s. COMM: %lf s.\n"
"Factorize: %lf s. COMM: %lf s.\n"
"Solution: %lf s. COMM: %lf s.\n"
"Factorization GFLOPS: %lf GFLOPS/s.\n"
"GEMM: %lf%%, POTRF: %lf%%, TRSM: %lf%%\n"
"Pre-fac vs. Actual: %lf%%, %lf%% \n"
"Matrix Memory: %lf GiB.\n"
"Basis Memory: %lf GiB.\n"
"Vector Memory: %lf GiB.\n"
"Err: Compress %e, Factor %e\n"
"Program: %lf s.\n",
(int)Nbody, (int)(Nbody / Nleaf), theta, 3, (int)mpi_size,
construct_time, construct_comm_time, matvec_time, matvec_comm_time, factor_time, factor_comm_time,
solve_time, solve_comm_time, (double)sum_flops * 1.e-9 / factor_time, percent[0], percent[1], percent[2],
(double)100 * factor_flops[3] / (sum_flops + factor_flops[3]), (double)100 * sum_flops / (sum_flops + factor_flops[3]),
(double)mem_A[0] * 1.e-9, (double)mem_A[1] * 1.e-9, (double)mem_A[2] * 1.e-9, cerr, err, prog_time);
for (int64_t i = 0; i <= levels; i++) {
basis_free(&basis[i]);
node_free(&nodes[i]);
}
cellComm_free(cell_comm, levels);
free(body);
free(Xbody);
free(cell);
free(rels_far);
free(rels_near);
free(cell_comm);
free(basis);
free(nodes);
free(X1);
free(X2);
set_work_size(0, &Workspace, &Lwork);
fin_libs();
return 0;
}