forked from AllanYangZhou/metalearning-symmetries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinner_optimizers.py
88 lines (77 loc) · 3.21 KB
/
inner_optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""Custom inner loop optimizers for use with higher."""
import collections
import torch
from torch.optim import SGD, Adam
def is_warp_layer(name):
return "warp" in name
NAME_TO_INNER_OPT_CLS = {
"maml": SGD,
"maml_adam": Adam,
}
# TODO(allanz): Refactor into a module (or several), similar to ebn in higher/examples.
class InnerOptBuilder:
def __init__(self, network, device, opt_name, init_lr, init_mode, lr_mode, ext_metaparams=None):
self.network = network
self.opt_name = opt_name
self.init_lr = init_lr
self.init_mode = init_mode
self.lr_mode = lr_mode
# metaparams that are not neural network params (e.g., learned lrs)
if ext_metaparams:
self.ext_metaparams = ext_metaparams
else:
self.ext_metaparams = self.make_ext_metaparams(device)
self.inner_opt_cls = NAME_TO_INNER_OPT_CLS[opt_name]
self.inner_opt = NAME_TO_INNER_OPT_CLS[opt_name](self.param_groups, lr=self.init_lr)
def make_ext_metaparams(self, device):
ext_metaparams = {}
for name, param in self.network.named_parameters():
if is_warp_layer(name) or not param.requires_grad:
# Ignore symmetry params in the inner loop.
continue
if self.lr_mode == "per_layer":
inner_lr = torch.tensor(self.init_lr).to(device)
inner_lr.requires_grad = True
ext_metaparams[f"{name}_lr"] = inner_lr
elif self.lr_mode == "per_param":
inner_lr = self.init_lr * torch.ones_like(param).to(device)
inner_lr.requires_grad = True
ext_metaparams[f"{name}_lr"] = inner_lr
elif self.lr_mode == "fixed":
pass
else:
raise ValueError(f"Unrecognized lr_mode: {self.lr_mode}")
return ext_metaparams
@property
def metaparams(self):
metaparams = {}
metaparams.update(self.ext_metaparams)
for name, param in self.network.named_parameters():
if is_warp_layer(name) or self.init_mode == "learned":
metaparams[name] = param
return metaparams
@property
def param_groups(self):
param_groups = []
for name, param in self.network.named_parameters():
if is_warp_layer(name) or not param.requires_grad:
# Ignore symmetry params in the inner loop.
continue
param_groups.append({"params": param})
return param_groups
@property
def overrides(self):
overrides = collections.defaultdict(list)
for name, param in self.network.named_parameters():
if is_warp_layer(name) or not param.requires_grad:
# Ignore symmetry params in the inner loop.
continue
if self.lr_mode == "per_layer":
overrides["lr"].append(self.ext_metaparams[f"{name}_lr"])
elif self.lr_mode == "per_param":
overrides["lr"].append(self.ext_metaparams[f"{name}_lr"])
elif self.lr_mode == "fixed":
pass
else:
raise ValueError(f"Unrecognized lr_mode: {self.lr_mode}")
return overrides