Attention-based Single Image Dehazing Using Improved CycleGAN, IJCN IEEE WCCI 2022. Official Pytorch based implementation.
- Python 3
- PyTorch >= 1.0
- NVIDIA GPU+CUDA
Dataset used : RESIDE
File Structure
project
│ README.md
│ dataset.py
│ main.py
│ metrics.py
│ option.py
│ utility.py
└───inputs
|
└───outputs
|
└───models
| | dehaze.py
| | dicriminator.py
| | generator.py
| └───DCNv2_latest
|
└───data
│ └───haze
│ | | *.png
│ |
│ └───clear
│ | | *.png
│ |
│ └───SOTS
│ └───indoor
│ | └───haze
│ | | | *.png
│ | |
│ | └───clear
│ | | *.png
│ |
│ └───indoor
│ └───haze
│ | | *.png
│ |
│ └───clear
│ | *.png
|
└───trained_models
Methods | Indoor(PSNR/SSIM) | Outdoor(PSNR/SSIM) |
---|---|---|
Paired Models | - | - |
AOD-NET | 19.06/0.8504 | 20.29/0.8765 |
DehazeNet | 21.14/0.8472 | 22.46/0.8514 |
FFA-Net | 36.39/0.9886 | 33.57/0.9840 |
Unpaired Models | - | - |
DCP | 16.62/0.8179 | 19.13/0.8148 |
Improved CycleGAN (with ssim loss) | 20.05/0.8307 | 21.14/0.8919 |
Dehaze-GLCGAN | 23.03/0.9165 | 26.51/0.9354 |
Ours | 31.67/0.9612 | 36.17/0.9745 |
Unzip DCNv2_latest.zip
inside models and build the files.
Train the model in ITS
dataset.
python main.py
Put your images in input
.
python main.py --eval
the dehazed image will be saved at output
The code for DCN module implementation in PyTorch has been taken from DCNv2_latest.