forked from theAIGuysCode/yolov4-custom-functions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
148 lines (129 loc) · 6.8 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
# comment out below line to enable tensorflow outputs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
from absl import app, flags, logging
from absl.flags import FLAGS
import core.utils as utils
from core.yolov4 import filter_boxes
from core.functions import *
from tensorflow.python.saved_model import tag_constants
from PIL import Image
import cv2
import numpy as np
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt')
flags.DEFINE_string('weights', './checkpoints/yolov4-416',
'path to weights file')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny')
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')
flags.DEFINE_list('images', './data/images/kite.jpg', 'path to input image')
flags.DEFINE_string('output', './detections/', 'path to output folder')
flags.DEFINE_float('iou', 0.45, 'iou threshold')
flags.DEFINE_float('score', 0.50, 'score threshold')
flags.DEFINE_boolean('count', False, 'count objects within images')
flags.DEFINE_boolean('dont_show', False, 'dont show image output')
flags.DEFINE_boolean('info', False, 'print info on detections')
flags.DEFINE_boolean('crop', False, 'crop detections from images')
flags.DEFINE_boolean('ocr', False, 'perform generic OCR on detection regions')
flags.DEFINE_boolean('plate', False, 'perform license plate recognition')
def main(_argv):
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
input_size = FLAGS.size
images = FLAGS.images
# load model
if FLAGS.framework == 'tflite':
interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
else:
saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING])
# loop through images in list and run Yolov4 model on each
for count, image_path in enumerate(images, 1):
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
image_data = cv2.resize(original_image, (input_size, input_size))
image_data = image_data / 255.
# get image name by using split method
image_name = image_path.split('/')[-1]
image_name = image_name.split('.')[0]
images_data = []
for i in range(1):
images_data.append(image_data)
images_data = np.asarray(images_data).astype(np.float32)
if FLAGS.framework == 'tflite':
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
interpreter.set_tensor(input_details[0]['index'], images_data)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
if FLAGS.model == 'yolov3' and FLAGS.tiny == True:
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25, input_shape=tf.constant([input_size, input_size]))
else:
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25, input_shape=tf.constant([input_size, input_size]))
else:
infer = saved_model_loaded.signatures['serving_default']
batch_data = tf.constant(images_data)
pred_bbox = infer(batch_data)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
# run non max suppression on detections
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=FLAGS.iou,
score_threshold=FLAGS.score
)
# format bounding boxes from normalized ymin, xmin, ymax, xmax ---> xmin, ymin, xmax, ymax
original_h, original_w, _ = original_image.shape
bboxes = utils.format_boxes(boxes.numpy()[0], original_h, original_w)
# hold all detection data in one variable
pred_bbox = [bboxes, scores.numpy()[0], classes.numpy()[0], valid_detections.numpy()[0]]
# read in all class names from config
class_names = utils.read_class_names(cfg.YOLO.CLASSES)
# by default allow all classes in .names file
allowed_classes = list(class_names.values())
# custom allowed classes (uncomment line below to allow detections for only people)
#allowed_classes = ['person']
# if crop flag is enabled, crop each detection and save it as new image
if FLAGS.crop:
crop_path = os.path.join(os.getcwd(), 'detections', 'crop', image_name)
try:
os.mkdir(crop_path)
except FileExistsError:
pass
crop_objects(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB), pred_bbox, crop_path, allowed_classes)
# if ocr flag is enabled, perform general text extraction using Tesseract OCR on object detection bounding box
if FLAGS.ocr:
ocr(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB), pred_bbox)
# if count flag is enabled, perform counting of objects
if FLAGS.count:
# count objects found
counted_classes = count_objects(pred_bbox, by_class = False, allowed_classes=allowed_classes)
# loop through dict and print
for key, value in counted_classes.items():
print("Number of {}s: {}".format(key, value))
image = utils.draw_bbox(original_image, pred_bbox, FLAGS.info, counted_classes, allowed_classes=allowed_classes, read_plate = FLAGS.plate)
else:
image = utils.draw_bbox(original_image, pred_bbox, FLAGS.info, allowed_classes=allowed_classes, read_plate = FLAGS.plate)
image = Image.fromarray(image.astype(np.uint8))
if not FLAGS.dont_show:
image.show()
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
cv2.imwrite(FLAGS.output + 'detection' + str(count) + '.png', image)
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass