-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtexsyn.py
67 lines (52 loc) · 2.35 KB
/
texsyn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
from pathlib import Path
import numpy as np
from tqdm import tqdm
from PIL import Image
import jax, optax, equinox as eqx
import jax.numpy as jnp
import metrics
from utils import preprocess_exemplar
parser = argparse.ArgumentParser("Pixel-wise optimization for texture synthesis")
parser.add_argument("--exemplar_path", type=str)
parser.add_argument("--size", type=int, default=256)
parser.add_argument("--scaling_factor", type=float, default=2.0)
parser.add_argument("--loss_type", type=str, default="sw", choices=["sw", "gram"])
parser.add_argument("--n_iter", type=int, default=1000)
parser.add_argument("--lr", type=float, default=1.0)
args = parser.parse_args()
if __name__ == "__main__":
key = jax.random.PRNGKey(42)
# load exemplar
exemplar = Image.open(args.exemplar_path)
exemplar = preprocess_exemplar(exemplar, (args.size, args.size))
exemplar_np = np.array(exemplar, dtype=np.float32).transpose(2, 0, 1) / 255.0
# load VGG19 and loss function
vgg19 = metrics.load_pretrained_VGG19_from_pth("vgg19.npy")
if args.loss_type == "sw":
_lossfn = metrics.create_slice_loss(vgg19, exemplar_np)
elif args.loss_type == "gram":
_lossfn = metrics.create_gram_loss(vgg19, exemplar_np)
# initialize pixels
key, subkey = jax.random.split(key)
mean = exemplar_np.mean(axis=(1, 2), keepdims=True)
new_size = int(args.size * args.scaling_factor)
pixels = mean + 1e-2 * jax.random.normal(subkey, (3, new_size, new_size))
# initialize optimizer
optimizer = optax.lbfgs(args.lr)
opt_state = optimizer.init(pixels)
# define update func for each iteration
@jax.jit
def update(pixels, opt_state, key):
lossfn = lambda pixels: _lossfn(pixels, key)
loss, grads = jax.value_and_grad(lossfn)(pixels)
updates, opt_state = optimizer.update(grads, opt_state, pixels, value=loss, grad=grads, value_fn=lossfn)
pixels = optax.apply_updates(pixels, updates)
return loss, pixels, opt_state
# training loop
for it in tqdm(range(args.n_iter), desc="iter"):
key, subkey = jax.random.split(key)
loss, pixels, opt_state = update(pixels, opt_state, subkey)
# save the result using PIL
image = Image.fromarray((np.array(pixels.clip(0.0, 1.0)).transpose(1, 2, 0) * 255).astype(np.uint8))
image.save(f"data/result_{args.loss_type}.png")