diff --git a/tests/test_pairwise_kernel.py b/tests/test_pairwise_kernel.py index 04e0a8f88..95423b051 100644 --- a/tests/test_pairwise_kernel.py +++ b/tests/test_pairwise_kernel.py @@ -34,7 +34,7 @@ def test_kernelgrad_pairwise(self): c = torch.cat((x2[..., :2], deriv_idx_2), dim=1) d = torch.cat((x2[..., 2:-1], deriv_idx_2), dim=1) - c12 = kernel.forward(x1, x2).evaluate().detach().numpy() + c12 = kernel.forward(x1, x2).to_dense().detach().numpy() pwc = ( ( kernel.latent_kernel.forward(a, c) @@ -73,7 +73,7 @@ def test_covar(self): b = x1[..., 2:] c = x2[..., :2] d = x2[..., 2:] - c12 = self.kernel.forward(x1, x2).evaluate().detach().numpy() + c12 = self.kernel.forward(x1, x2).to_dense().detach().numpy() pwc = ( ( self.latent_kernel.forward(a, c) @@ -95,7 +95,7 @@ def test_covar(self): b = x3[..., 2:] c = x4[..., :2] d = x4[..., 2:] - c34 = self.kernel.forward(x3, x4).evaluate().detach().numpy() + c34 = self.kernel.forward(x3, x4).to_dense().detach().numpy() pwc = ( ( self.latent_kernel.forward(a, c) @@ -122,7 +122,7 @@ def test_latent_diag(self): # should get 0 variance on pairs (a,a) diag = torch.cat((a, a), dim=1) - diagv = self.kernel.forward(diag, diag).evaluate().detach().numpy() + diagv = self.kernel.forward(diag, diag).to_dense().detach().numpy() npt.assert_allclose(diagv, 0.0) def test_diag(self):