forked from je-suis-tm/web-scraping
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCFTC.py
214 lines (157 loc) · 7.03 KB
/
CFTC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
# coding: utf-8
#scrape cftc trader commitment report
# In[1]:
import requests
import pandas as pd
import re
import os
os.chdir('H:/')
# In[2]:
#scraping function
def scrape(url):
session=requests.Session()
session.headers.update(
{'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'})
response=session.get(url)
return response
# In[3]:
#get data
def etl(response):
#create a list
text=response.content.decode('utf-8').split('\r')
#create index for each block
assets=[i for i in text if 'CHICAGO MERCANTILE EXCHANGE' in i]
ind=[text.index(i) for i in assets]
overall=[]
#etl
for i in ind:
commodity=text[i].split(' - CHICAGO MERCANTILE EXCHANGE')[0].replace('\n','')
commodity_code=text[i].split('Code-')[-1].replace('\n','')
date=re.search('\d{2}\/\d{2}\/\d{2}',text[i+1]).group()
contractunit=re.search('(?<=\().*(?=OPEN INTEREST)',text[i+7]).group().replace(')','')
open_interest=re.search('(?<=OPEN INTEREST\:).*',text[i+7]).group()
non_commercial_long_commitment,non_commercial_short_commitment, \
non_commercial_spread_commitment,commercial_long_commitment, \
commercial_short_commitment,total_long_commitment,total_short_commitment, \
non_reportable_long_commitment,non_reportable_short_commitment=re.findall('\S+',text[i+9])
changedate=re.search('\d{2}\/\d{2}\/\d{2}',text[i+11]).group()
change_open_interest=text[i+11].split(' ')[-1].replace(')','')
non_commercial_long_change,non_commercial_short_change, \
non_commercial_spread_change,commercial_long_change, \
commercial_short_change,total_long_change,total_short_change, \
non_reportable_long_change,non_reportable_short_change=re.findall('\S+',text[i+12])
non_commercial_long_percent,non_commercial_short_percent, \
non_commercial_spread_percent,commercial_long_percent, \
commercial_short_percent,total_long_percent,total_short_percent, \
non_reportable_long_percent,non_reportable_short_percent=re.findall('\S+',text[i+15])
totaltraders=text[i+17].split(' ')[-1].replace(')','')
non_commercial_long_traders,non_commercial_short_traders, \
non_commercial_spread_traders,commercial_long_traders, \
commercial_short_traders,total_long_traders,total_short_traders=re.findall('\S+',text[i+18])
temp=[commodity,commodity_code,date,contractunit,open_interest,
non_commercial_long_commitment,non_commercial_short_commitment,
non_commercial_spread_commitment,commercial_long_commitment,
commercial_short_commitment,total_long_commitment,
total_short_commitment,non_reportable_long_commitment,
non_reportable_short_commitment,changedate,change_open_interest,
non_commercial_long_change,non_commercial_short_change,
non_commercial_spread_change,commercial_long_change,
commercial_short_change,total_long_change,total_short_change,
non_reportable_long_change,non_reportable_short_change,
non_commercial_long_percent,non_commercial_short_percent,
non_commercial_spread_percent,commercial_long_percent,
commercial_short_percent,total_long_percent,
total_short_percent,non_reportable_long_percent,
non_reportable_short_percent,totaltraders,
non_commercial_long_traders,non_commercial_short_traders,
non_commercial_spread_traders,commercial_long_traders,
commercial_short_traders,total_long_traders,total_short_traders]
overall+=temp
colnames=['commodity',
'commodity_code',
'date',
'contract_unit',
'open_interest',
'non_commercial_long_commitment',
'non_commercial_short_commitment',
'non_commercial_spread_commitment',
'commercial_long_commitment',
'commercial_short_commitment',
'total_long_commitment',
'total_short_commitment',
'non_reportable_long_commitment',
'non_reportable_short_commitment',
'change_date',
'change_open_interest',
'non_commercial_long_change',
'non_commercial_short_change',
'non_commercial_spread_change',
'commercial_long_change',
'commercial_short_change',
'total_long_change',
'total_short_change',
'non_reportable_long_change',
'non_reportable_short_change',
'non_commercial_long_percent',
'non_commercial_short_percent',
'non_commercial_spread_percent',
'commercial_long_percent',
'commercial_short_percent',
'total_long_percent',
'total_short_percent',
'non_reportable_long_percent',
'non_reportable_short_percent',
'total_traders',
'non_commercial_long_traders',
'non_commercial_short_traders',
'non_commercial_spread_traders',
'commercial_long_traders',
'commercial_short_traders',
'total_long_traders',
'total_short_traders']
#create dataframe
df=pd.DataFrame(columns=colnames)
for i in range(len(colnames)):
df[colnames[i]]=overall[i::len(colnames)]
#transform
ind=['commodity', 'commodity_code','change_date',
'date', 'contract_unit', 'open_interest',
'change_open_interest','total_traders']
df=df.melt(id_vars=ind,value_vars=[i for i in df.columns if i not in ind])
#isolate position
df['position']=''
ind_long=df.loc[df['variable'].apply(lambda x: 'long' in x )].index
ind_short=df.loc[df['variable'].apply(lambda x: 'short' in x )].index
ind_spread=df.loc[df['variable'].apply(lambda x: 'spread' in x )].index
for i in ind_spread:
df.at[i,'position']='spread'
for i in ind_short:
df.at[i,'position']='short'
for i in ind_long:
df.at[i,'position']='long'
df['variable']=df['variable'].str.replace('long_','').str.replace('short_','').str.replace('spread_','')
#isolate type
df['type']=df['variable'].apply(lambda x:'_'.join(x.split('_')[:-1]))
#clean variable name
df['variable']=df['variable'].apply(lambda x:x.split('_')[-1])
df['variable']=df['variable'].str.replace('percent',
'percent_of_open_interest_for_each_type_of_traders')
df['variable']=df['variable'].str.replace('traders',
'number_of_traders_in_each_type')
#change col order
df=df[['commodity', 'commodity_code', 'change_date',
'date', 'contract_unit','open_interest',
'change_open_interest', 'total_traders',
'type','position','variable','value', ]]
return df
# In[4]:
def main():
url='https://www.cftc.gov/dea/futures/deacmesf.htm'
#scrape
response=scrape(url)
#get data
df=etl(option_url)
df.to_csv('trader commitment report.csv',index=False)
if __name__ == "__main__":
main()