-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathconvert_to_tfrecord.py
89 lines (67 loc) · 3.1 KB
/
convert_to_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2017 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import io
import xml.etree.ElementTree as ET
import tensorflow as tf
from object_detection.utils import dataset_util
from PIL import Image
flags = tf.app.flags
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
flags.DEFINE_string('images_dir', '', 'Path to directory of images')
flags.DEFINE_string('labels_dir', '', 'Path to directory of labels')
FLAGS = flags.FLAGS
def create_tf_example(example):
image_path = os.getcwd() + '/' + FLAGS.images_dir + example
labels_path = os.getcwd() + '/' + FLAGS.labels_dir + os.path.splitext(example)[0] + '.xml'
# Read the image
img = Image.open(image_path)
width, height = img.size
img_bytes = io.BytesIO()
img.save(img_bytes, format=img.format)
height = height
width = width
encoded_image_data = img_bytes.getvalue()
image_format = img.format.encode('utf-8')
# Read the label XML
tree = ET.parse(labels_path)
root = tree.getroot()
xmins = xmaxs = ymins = ymaxs = list()
for coordinate in root.find('object').iter('bndbox'):
xmins = [int(coordinate.find('xmin').text)]
xmaxs = [int(coordinate.find('xmax').text)]
ymins = [int(coordinate.find('ymin').text)]
ymaxs = [int(coordinate.find('ymax').text)]
classes_text = ['tswift'.encode('utf-8')]
classes = [1]
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(encoded_image_data),
'image/source_id': dataset_util.bytes_feature(encoded_image_data),
'image/encoded': dataset_util.bytes_feature(encoded_image_data),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
for filename in os.listdir(FLAGS.images_dir):
tf_example = create_tf_example(filename)
writer.write(tf_example.SerializeToString())
writer.close()
if __name__ == '__main__':
tf.app.run()