-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotspecdecomp.m
312 lines (278 loc) · 11.4 KB
/
plotspecdecomp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
%
% Plots IMA results: plots IMA templates in a matrix for all IMs and
% ICs separately, or all ICs for each IM superimposed on a single axis, or
% each IC scalp map with super imposed IM templates on a single axis
%
%
% plotspecdecomp(IMA, varargin)
%
% Author: Johanna Wagner, Swartz Center for Computational Neuroscience, UC San Diego, 2019
% adapted from a function written by Julie Onton
%
%
%% Example: plot all ICs and IMs separately for IMA decomposition of a subject
% >> pop_plotspecdecomp(IMA, 'plottype', 'comb')
%
%
% Example: plot all ICs with a selection of superimposed IMs for IMA decomposition of a subject
% >> pop_plotspecdecomp(IMA, EEG, 'plottype', 'ims', 'factors', [1 3 4 6 7], 'maps', 'on')
%
%
%
% INPUTS
% IMA - previously saved IMA structure (created either by running pop_runima or pop_runima_study)
% EEG - EEG structure of associated EEG file
% comps - independent components to plot
% factors - IMs to plot
% frqlim - frequency limits for plotting
% plottype -- ['ims', 'ics' 'comb'] 'ics' will plot a single axis with all comps
% superimposed.
% 'ims' will show each IC scalp map with super imposed IM templates.
% 'comb' will plot all ICs and IMs plotted separately.
% maps -- ['on','off'] if 'on', then will plot scalp maps.
function plotspecdecomp(IMA, EEG, varargin)
%% check inputs
g = finputcheck(varargin, { 'comps' 'integer' [] [IMA.complist]; ...
'factors' 'integer' [] [1:IMA.npcs]; ...
'frqlim' 'real' [] [IMA.freqlim]; ...
'freqscale' 'string' {'log' 'linear'} 'log';...
'plottype' 'string' {'ics' 'ims' 'comb'} 'comb'; ...
'maps' 'string' {'on', 'off'} 'on';...
}, 'inputgui');
if isstr(g), error(g); end;
plotbackproj = 'off'; % for single IM plotting, plots all trials vs activations
maxrows = 11; % max # of rows to plot before starting new fig
lnwdth = 2;
nlim = []; mlim = [];
%% load EEG dataset associated with IMA for plotting of scalpmaps
% EEG = pop_loadset('filename',IMA.subjfilename{1},'filepath',IMA.subjfilepath{1});
times = IMA.timevec/1000; % transform timevector to seconds
freqvec = IMA.freqvec;
freqscale = IMA.freqscale;
meanpwr = IMA.meanpwr;
sph = IMA.sph;
wts = IMA.wts;
PCact = IMA.pc; % PC spectral backprojection
origspecdat = IMA.timefreq; % original timefrequency matrix containing tf maps of all ICS time x spectra*ICs
speceig = IMA.eigvec; % PC backprojection in time
ws = wts*sph;
winv = pinv(ws);
activations = ws*PCact; % template spectra
specwts = speceig*winv;
winv = specwts; % template timecourse (overwrite ICA winv with ICA/PCA winv)
clear speceig specwts
icadefs;
%% scale activations
[valAct, indAct] = max(abs(activations)');
for onj = 1:size(activations,1);
if activations(onj,indAct(onj))>=0;
maxval = 1;
else
maxval = -1;
end
activations(onj,:) = activations(onj,:)*maxval;
polarity(onj) = maxval;
winv(:,onj) = winv(:,onj)*maxval;
end
scaling = rms(activations,2);
activations = activations./repmat(scaling,1,size(activations,2));
clear wts sph ws icamatall
%% plotting function
fr = find(freqvec >= g.frqlim(1) & freqvec <= g.frqlim(end)); % find index of frequency vector inside freq limit
minl = min(min(activations(g.factors,:)))-abs(min(min(activations(g.factors,:))))*.01;
maxl = max(max(activations(g.factors,:)))+abs(max(max(activations(g.factors,:))))*.01;
%% plot superimposed IC templates for each IM
if strcmp(g.plottype,'ics') % superimpose ic templates
figure;row = round(sqrt(length(g.factors))); col = ceil(sqrt(length(g.factors))); % determine how many rows and columns for subplot
cols = lines(length(g.comps)); pl = 1;
for tpp = 1:length(g.factors)
tp = g.factors(tpp);
sbplot(row,col,pl)
% plot superimposed IC template spectra for each specified IM
for cp = 1:length(g.comps)
rcp = find(g.comps(cp) == IMA.complist);
if strcmp(g.freqscale,'log') % log spaced
ph = semilogx(freqvec,activations(tp,length(freqvec)*(rcp-1)+1:length(freqvec)*rcp), 'LineWidth', 2);hold on
set(gca,'FontSize',12)
set(gca,'xtick',[3 6 10 20 40 80])
xlim([g.frqlim(1) g.frqlim(end)])
set(ph,'color',cols(cp,:));
else % otherwise linear
ph = plot(freqvec,activations(tp,length(freqvec)*(rcp-1)+1:length(freqvec)*rcp),'linewidth',lnwdth);
xlim([g.frqlim(1) g.frqlim(end)])
hold on;
set(ph,'color',cols(cp,:));
end;
end;
set(gca,'ylim',[minl maxl]); title(['IM ',int2str(g.factors(tpp))]);
set(gca,'box','off');
set(gca,'xgrid','on');
if pl == (row-1)*col+1
xlabel('Frequency (Hz)'); ylabel('Relative Power');
elseif pl > (row-1)*col+1
xlabel('Frequency (Hz)');
end;
if pl <= col*(row-1)
set(gca,'xticklabel',[]);
end;pl = pl+1;
end;
h90 = textsc(['Superimposed IC Templates for single IMs'],'title');
set(h90, 'FontSize',20)
set(gcf,'Position',[100 300 1400 900]);
set(gcf,'PaperOrientation','landscape'); set(gcf,'PaperPosition',[0.25 0.25 10.5 8]);
set(gcf,'color',BACKCOLOR);
axcopy
%% plot superimposed IM templates for each IC
elseif strcmp(g.plottype,'ims') % superimpose IM templates for each IC
figure;
row = round(sqrt(length(g.comps)*2)); % check how many comlumns and rows for subplot
col = ceil(sqrt(length(g.comps)*2));
if mod(col,2) == 1
col = col+1; row = row-1;
end;
cols = lines(length(g.factors));
pl = 1;
% plot superimposed IC template spectra for each specified IM
for cp = 1:length(g.comps)
rcp = find(g.comps(cp) == IMA.complist);
sbplot(row,col,pl); pl = pl+1;
topoplot(EEG.icawinv(:,g.comps(cp)),EEG.chanlocs(EEG.icachansind),'electrodes','off');
set(gca,'fontsize',20); title(['IC ',int2str(g.comps(cp))]);
sbplot(row,col,pl);
for tpp = 1:length(g.factors)
tp = g.factors(tpp);
if strcmp(g.freqscale,'log') % log spaced
ph = semilogx(freqvec,activations(tp,length(freqvec)*(rcp-1)+1:length(freqvec)*rcp), 'LineWidth', 2);hold on
set(gca,'FontSize',12)
set(gca,'xtick',[3 6 10 20 40 80])
xlim([g.frqlim(1) g.frqlim(end)])
set(ph,'color',cols(tpp,:));
else % otherwise linear
ph = plot(freqvec,activations(tp,length(freqvec)*(rcp-1)+1:length(freqvec)*rcp),'linewidth',lnwdth);
xlim([g.frqlim(1) g.frqlim(end)])
hold on;
set(ph,'color',cols(tpp,:));
end;
end;
set(gca,'ylim',[minl maxl]);
set(gca,'xgrid','on');
if cp <= round(col/2)
title(['IM templates'],'fontsize',20);
end
if pl == (row-1)*col+2
xlabel('Frequency (Hz)'); ylabel('Relative Power');
elseif pl > (row-1)*col+1
xlabel('Frequency (Hz)');
end;
if pl <= col*(row-1)
set(gca,'xticklabel',[]);
end;
pl = pl+1;
end;
h90 = textsc(['Superimposed IM templates for single ICs'],'title');
set(h90, 'FontSize',20)
set(gcf,'Position',[100 300 1400 900]);
set(gcf,'PaperOrientation','landscape'); set(gcf,'PaperPosition',[0.25 0.25 10.5 8]);
set(gcf,'color',BACKCOLOR);
axcopy
%% plot IM templates separately for each IC
else
figure;row = length(g.factors)+1;
if row > maxrows % check how many columns and rows for subplot
row = round(row/2);
if row > maxrows
row = maxrows;
end;
end;
col = length(g.comps)+1;
if strcmp(g.maps,'on')% plot scalp maps if requested
pl = 2;
for cp = 1:length(g.comps)
sbplot(row,col,pl)
topoplot(EEG.icawinv(:,g.comps(cp)),EEG.chanlocs(EEG.icachansind),'electrodes','off','plotrad',.7); pl = pl+1;
set(gca,'fontsize',14); title(['IC ' int2str(g.comps(cp))]);
end;
else
pl = 1;
end;
for tpp = 1:length(g.factors)
tp = g.factors(tpp);
if pl == row*col+1
set(gcf,'Position',[100 300 1400 900]);
set(gcf,'PaperOrientation','landscape'); set(gcf,'PaperPosition',[0.25 0.25 10.5 8]);
set(gcf,'color',BACKCOLOR);
axcopy
if isempty(EEG.subject) %% plot title
ph=textsc(['Independent Modulators'],'title');
else
ph=textsc(['Independent Modulators'],'title');
end
set(ph,'fontsize',20);
figure;
if strcmp(g.maps,'on')% plot scalp maps if requested
pl = 2;
for cp = 1:length(g.comps)
sbplot(row,col,pl)
topoplot(EEG.icawinv(:,g.comps(cp)),EEG.chanlocs(EEG.icachansind),'electrodes','off'); pl = pl+1;
set(gca,'fontsize',16); title(['IC' int2str(g.comps(cp))]);
end;
else
pl = 1;
end;
end;
% plot IM histogram
sbplot(row,col,pl)
hist(winv(:,tp),75);pl = pl+1;hold on;
set(gca,'fontsize',7);
plot([0 0],[get(gca,'ylim')],'r-');
set(gca,'yticklabel',[]); set(gca,'xticklabel',[]);
title(['IM ',int2str(tp)], 'fontsize',12);
% plot template spectra
for cp = 1:length(g.comps)
rcp = find(ismember(IMA.complist,g.comps(cp)));
sbplot(row,col,pl);
if strcmp(g.freqscale,'log') % log spacing
ph = semilogx(freqvec,activations(tp,length(freqvec)*(rcp-1)+1:length(freqvec)*rcp), 'LineWidth', 2, 'Color','b');hold on
set(gca,'FontSize',12)
set(gca,'xtick',[3 10 30 80])
xlim([g.frqlim(1) g.frqlim(end)]);
pl = pl+1;hold on;
else % otherwise linear
plot(freqvec,activations(tp,length(freqvec)*(rcp-1)+1:length(freqvec)*rcp),'LineWidth', 2); pl = pl+1;hold on;
xlim([g.frqlim(1) g.frqlim(end)]);
end;
set(gca,'ylim',[minl maxl]);
set(gca,'ytick',[ceil(minl) 0 floor(maxl)]);
set(gca,'xgrid','on');
set(gca,'fontsize',7);set(gca,'box','off');
set(gca,'ticklength',[.03 .03]);
plot([get(gca,'xlim')],[0 0],'r-');
if cp == round(length(g.comps)/2)
xlabel('Frequency (Hz)')
end
set(gca,'fontsize', 12)
if pl <= (row-1)*col+1
if tpp ~= length(g.factors)
set(gca,'xticklabel',[]);
set(gca,'yticklabel',[]);
xlabel('')
elseif tpp ~= length(g.factors) & cp ~= 1;
set(gca,'yticklabel',[]);
end;
end;
if ~strcmp(g.maps,'on') & pl <= (col+1)
title(int2str(g.comps(cp)));
end;
end;
end;
set(gcf,'Position',[100 300 1400 900]);
set(gcf,'PaperOrientation','landscape'); set(gcf,'PaperPosition',[0.25 0.25 10.5 8]);
if isempty(EEG.subject)
ph=textsc(['Independent Modulators'],'title');
else
ph=textsc(['Independent Modulators'],'title');
end
set(ph,'fontsize',20);
set(gcf,'color',BACKCOLOR);
axcopy
end;