forked from MariusKlug/zapline-plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterative_outlier_removal.m
41 lines (34 loc) · 1.19 KB
/
iterative_outlier_removal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
% ITERATIVE_OUTLIER_REMOVAL - Removal of outliers in a vector based on an iterative sigma threshold approach. Only finds
% the number of removals and the threshold.
%
% Usage:
% >> [n_remove, threshold] = iterative_outlier_removal(data_vector,sd_level,sd_level_increase);
%
% Required Inputs:
% data_vector - input vector
%
% Optional Parameters:
% sd_level - initial sd level for removal (default = 3)
%
% Outputs:
% n_remove - number of removed datapoints
% threshold - final threshold that was used
%
% See also:
% nt_zapline_plus, clean_data_with_zapline
%
% Author: Marius Klug, 2021
function [n_remove, threshold] = iterative_outlier_removal(data_vector,sd_level)
if ~exist('sd_level','var')
sd_level = 3;
end
threshold_old = max(data_vector);
threshold = mean(data_vector)+sd_level*std(data_vector);
n_remove = 0;
while threshold < threshold_old
flagged_points = data_vector>threshold;
data_vector(flagged_points) = [];
n_remove = n_remove + sum(flagged_points);
threshold_old = threshold;
threshold = mean(data_vector)+sd_level*std(data_vector);
end