forked from open-mmlab/mmocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmask-rcnn_resnet50_fpn_160e_ctw1500.py
56 lines (48 loc) · 1.61 KB
/
mask-rcnn_resnet50_fpn_160e_ctw1500.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
_base_ = [
'_base_mask-rcnn_resnet50_fpn.py',
'../_base_/datasets/ctw1500.py',
'../_base_/default_runtime.py',
'../_base_/schedules/schedule_sgd_base.py',
]
# optimizer
optim_wrapper = dict(optimizer=dict(lr=0.08))
train_cfg = dict(max_epochs=160)
# learning policy
param_scheduler = [
dict(type='LinearLR', end=500, start_factor=0.001, by_epoch=False),
dict(type='MultiStepLR', milestones=[80, 128], end=160),
]
# dataset settings
ctw1500_textdet_train = _base_.ctw1500_textdet_train
ctw1500_textdet_test = _base_.ctw1500_textdet_test
# test pipeline for CTW1500
ctw_test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1600, 1600), keep_ratio=True),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
ctw1500_textdet_train.pipeline = _base_.train_pipeline
ctw1500_textdet_test.pipeline = ctw_test_pipeline
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=ctw1500_textdet_train)
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=ctw1500_textdet_test)
test_dataloader = val_dataloader
auto_scale_lr = dict(base_batch_size=8)