forked from open-mmlab/mmocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabinet_20e_st-an_mj.py
63 lines (54 loc) · 1.85 KB
/
abinet_20e_st-an_mj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
_base_ = [
'../_base_/datasets/mjsynth.py',
'../_base_/datasets/synthtext.py',
'../_base_/datasets/cute80.py',
'../_base_/datasets/iiit5k.py',
'../_base_/datasets/svt.py',
'../_base_/datasets/svtp.py',
'../_base_/datasets/icdar2013.py',
'../_base_/datasets/icdar2015.py',
'../_base_/default_runtime.py',
'../_base_/schedules/schedule_adam_base.py',
'_base_abinet.py',
]
load_from = 'https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_pretrain-45deac15.pth' # noqa
optim_wrapper = dict(optimizer=dict(lr=1e-4))
train_cfg = dict(max_epochs=20)
# learning policy
param_scheduler = [
dict(
type='LinearLR', end=2, start_factor=0.001,
convert_to_iter_based=True),
dict(type='MultiStepLR', milestones=[16, 18], end=20),
]
# dataset settings
train_list = [
_base_.mjsynth_textrecog_train, _base_.synthtext_an_textrecog_train
]
test_list = [
_base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test,
_base_.svt_textrecog_test, _base_.svtp_textrecog_test,
_base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test
]
train_dataset = dict(
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
test_dataset = dict(
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
train_dataloader = dict(
batch_size=192,
num_workers=32,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
val_dataloader = test_dataloader
val_evaluator = dict(
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator
auto_scale_lr = dict(base_batch_size=192 * 8)