-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgap_test_gpu.cu
702 lines (579 loc) · 25.8 KB
/
gap_test_gpu.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
// Copyright 2021 Seth Troisi
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <atomic>
#include <cassert>
#include <chrono>
#include <cmath>
#include <condition_variable>
#include <cstdint>
#include <cstdio>
#include <fstream>
#include <iostream>
#include <memory>
#include <mutex>
#include <sstream>
#include <string>
#include <thread>
#include <unistd.h>
#include <unordered_map>
#include <vector>
// pthread_setname_np
#include <pthread.h>
#include <gmp.h>
#include "gap_common.h"
#include "gap_test_common.h"
#include "miller_rabin.h"
using std::cout;
using std::endl;
using std::vector;
using namespace std::chrono;
#ifdef GPU_BITS
#define BITS GPU_BITS
#else
#define BITS 1024
#endif
#define WINDOW_BITS ((BITS <= 1024) ? 5 : 6)
/**
* BATCH_GPU is 2^n >= 1024
* SEQUENTIAL_IN_BATCH = {1,2,4}
* 1 => 0 overhead
* 2 => 0.5 extra PRP/m
* 4 => 1.5 extra PRP/M
*
* BATCHED_M is number of M loaded at the same time
* ------------------
* Try:
* 1024, 16384, 1, 8, 1
* ???2048, 4096, 2, 8, 1
* ???4096, 2048, 4, 16, 1
*
*/
const size_t BATCH_GPU = 2*8192;
const size_t SEQUENTIAL_IN_BATCH = 1;
const size_t BATCHED_M = 2 * BATCH_GPU * 120 / 100 / SEQUENTIAL_IN_BATCH; // 10% extra
/**
* Originally 8 which has highest throughput but only if we have LOTS of instances
* this helps reduce the number of parallel instances needed
*/
const int THREADS_PER_INSTANCE = 8;
const int ROUNDS = 1;
//************************************************************************
void prime_gap_test(const struct Config config);
int main(int argc, char* argv[]) {
Config config = Args::argparse(argc, argv, Args::Pr::TEST_GPU);
if (config.valid == 0) {
Args::show_usage(argv[0], Args::Pr::TEST_GPU);
return 1;
}
if (config.verbose >= 2) {
printf("Compiled with GMP %d.%d.%d\n",
__GNU_MP_VERSION, __GNU_MP_VERSION_MINOR, __GNU_MP_VERSION_PATCHLEVEL);
}
if( !has_prev_prime_gmp() ) {
cout << "See Notes in README.md for instructions on using dev GMPlib" << endl;
return 1;
}
if (config.sieve_length == 0) {
cout << "Must set sieve-length for " << argv[0] << endl;
Args::show_usage(argv[0], Args::Pr::TEST_GPU);
return 1;
}
setlocale(LC_NUMERIC, "");
if (config.verbose >= 0) {
printf("\n");
printf("Testing m * %d#/%d, m = %ld + [0, %'ld)\n",
config.p, config.d, config.mstart, config.minc);
}
if (config.mskip > 0) {
printf("\tskipping m < %'ld\n", config.mskip);
assert(config.mskip >= config.mstart);
assert(config.mskip < (config.mstart + config.minc));
}
setlocale(LC_NUMERIC, "C");
// Determine compression
{
std::string fn = Args::gen_unknown_fn(config, ".txt");
std::ifstream unknown_file(fn, std::ios::in);
assert( unknown_file.is_open() ); // Can't open save_unknowns file
assert( unknown_file.good() ); // Can't open save_unknowns file
config.compression = Args::guess_compression(config, unknown_file);
}
prime_gap_test(config);
}
class GPUBatch {
public:
enum State { EMPTY, READY, RESULT_WRITTEN };
State state = EMPTY;
// current index;
int i;
// number to check if prime
vector<mpz_t*> z;
// XXX: This is an ugly hack because you can't create mpz_t vector easily
mpz_t *z_array;
// If z[i] should be tested
vector<bool> active;
// Result from GPU
vector<int> result;
// index into 'processing' (DataM)
vector<int64_t> data_i;
// if this is p_i or n_i
vector<int> p_or_n;
vector<int> unknown_i;
GPUBatch(size_t n) {
elements = n;
z_array = (mpz_t *) malloc(n * sizeof(mpz_t));
for (size_t i = 0; i < n; i++) {
mpz_init(z_array[i]);
z.push_back(&z_array[i]);
}
active.resize(n, 0);
result.resize(n, -1);
data_i.resize(n, -1);
p_or_n.resize(n, -1);
unknown_i.resize(n, -1);
}
~GPUBatch() {
for (size_t i = 0; i < elements; i++) {
mpz_clear(z_array[i]);
}
}
private:
size_t elements;
};
class DataM {
public:
/**
* Elements in READY state can ONLY be modified by load_thread
* Elements in RUNNING are either part of a GPU batch in overflowed queue
*/
DataM() {};
DataM(long m): m(m) {};
enum State { READY, RUNNING, OVERFLOW_DONE };
State state = READY;
long m;
mpz_t center;
vector<int32_t> unknowns[2];
bool p_found = false, n_found = false;
int prev_p = 0, next_p = 0;
// if this entry needs to be handled manually
bool overflow = false;
size_t p_tests = 0;
size_t n_tests = 0;
};
/** Shared state between threads */
std::atomic<bool> is_running;
/**
* Note: Uses a double batched system
* C++ Thread is preparing batch_a (even more m)
* While GPU runs batch_b
*/
vector<GPUBatch> batches = {{BATCH_GPU}, {BATCH_GPU}};
std::mutex overflow_mtx;
std::condition_variable overflow_cv;
vector<DataM*> overflowed;
void run_gpu_thread(const struct Config config) {
pthread_setname_np(pthread_self(), "RUN_GPU_THREAD");
// XXX: params1024, params2048 with *runner1024, *runner2048 and only new one of them.
typedef mr_params_t<THREADS_PER_INSTANCE, BITS, WINDOW_BITS> params;
test_runner_t<params> runner(BATCH_GPU, ROUNDS);
size_t processed_batches = 0;
size_t no_batch_count_ms = 0;
while (is_running) {
bool no_batch = true;
for (GPUBatch& batch : batches) {
if (batch.state == GPUBatch::State::READY) {
if (batch.i != BATCH_GPU)
printf("Partial batch %d/%ld\n", batch.i, BATCH_GPU);
// Run batch on GPU and wait for results to be set
runner.run_test(batch.z, batch.result);
batch.state = GPUBatch::State::RESULT_WRITTEN;
no_batch = false;
processed_batches++;
}
}
if (no_batch) {
// Waiting doesn't count till 1st batch is ready
if (config.verbose >= 0 && processed_batches > 0) {
no_batch_count_ms += 100;
printf("Waiting on batch%ld => %.1f seconds\n",
no_batch_count_ms / 100, no_batch_count_ms / 1000.0);
}
usleep(250000); // 250ms
}
}
if (config.verbose >= 1) {
printf("Processed %'ld batches\n", processed_batches);
}
}
void run_overflow_thread(const struct Config config) {
mpz_t prime_test;
mpz_init(prime_test);
std::unique_lock<std::mutex> lock(overflow_mtx);
while (true) {
overflow_cv.wait(lock, []{ return overflowed.size() || !is_running; });
if (!is_running) break;
while (overflowed.size()) {
DataM& interval = *overflowed.back(); overflowed.pop_back();
lock.unlock(); // Allow main thread to add more things while we process
assert (interval.overflow && interval.state == DataM::State::RUNNING);
// NOTE: Overhead to doing this while GPU waits seems small (<1% of candidates)
// But is actually A LOT because 40x slower. Becomes ~20-40% overhead quickly.
if (interval.prev_p == -1) {
assert(interval.p_tests > 0);
//cout << "gap_out_of_sieve_prev m=" << interval.m << endl;
mpz_sub_ui(prime_test, interval.center, config.sieve_length);
mpz_prevprime(prime_test, prime_test);
mpz_sub(prime_test, interval.center, prime_test);
interval.prev_p = mpz_get_ui(prime_test);
interval.p_found = true;
interval.overflow = 0;
}
if (interval.next_p == -1) {
assert(interval.n_tests > 0);
//cout << "gap_out_of_sieve_next m=" << interval.m << endl;
mpz_add_ui(prime_test, interval.center, config.sieve_length);
mpz_nextprime(prime_test, prime_test);
mpz_sub(prime_test, prime_test, interval.center);
interval.next_p = mpz_get_ui(prime_test);
interval.n_found = true;
interval.overflow = 0;
}
// Mark interval as finished processing
// NOTE: don't mark as READY or race_condition can happen in load
interval.state = DataM::State::OVERFLOW_DONE;
lock.lock(); // Lock so that overflow_cv / unlock waits correctly
}
}
mpz_clear(prime_test);
}
void load_batch_thread(const struct Config config, const size_t QUEUE_SIZE) {
// TODO ask C++ person if I need to worry about CPU doing cache invalidation with this setup
// if batch is RESULT_WRITTEN | read result back to DataM processing | update to EMPTY
// if batch is EMPTY | load data from DataM processing | update to READY, unlock GPU thread
// if all batches EMPTY, wait(thread_sync)
mpz_t K;
double K_log;
std::ifstream unknown_file;
// Used for various stats
StatsCounters stats(high_resolution_clock::now());
std::unordered_map<int64_t, DataM> processing;
const uint64_t P = config.p;
const uint64_t D = config.d;
const uint64_t M_start = config.mstart;
const uint64_t M_inc = config.minc;
const float min_merit = config.min_merit;
// Print Header info & Open unknown_fn
{
// ----- Merit / Sieve stats
K_log = prob_prime_and_stats(config, K);
{
float m_log = log(M_start);
if (config.verbose >= 1) {
printf("Min Gap ~= %d (for merit > %.1f)\n",
(int) (min_merit * (K_log + m_log)), min_merit);
}
}
// ----- Open unknown input file
{
std::string fn = Args::gen_unknown_fn(config, ".txt");
if (config.verbose >= 1) {
printf("\nReading unknowns from '%s'\n", fn.c_str());
}
unknown_file.open(fn, std::ios::in);
assert( unknown_file.is_open() ); // Can't open save_unknowns file
assert( unknown_file.good() ); // Can't open save_unknowns file
}
uint64_t first_mi = 0;
for (; first_mi > 0 && gcd(M_start + first_mi, D) > 1; first_mi++);
assert(first_mi < M_inc);
uint64_t last_mi = M_inc - 1;
for (; last_mi > 0 && gcd(M_start + last_mi, D) > 1; last_mi--);
assert(last_mi > 0 && last_mi < M_inc);
// ----- Main sieve loop.
if (config.verbose >= 1) {
uint64_t valid_ms = count_num_m(M_start, M_inc, D);
assert(valid_ms > 0 && valid_ms <= M_inc);
printf("\n%ld tests M_start(%ld) + mi(%ld to %ld)\n\n",
valid_ms, M_start, first_mi, last_mi);
}
}
// For compressed lines
BitArrayHelper helper(config, K);
// Main loop
uint64_t mi = 0;
while (mi < M_inc || !processing.empty()) {
usleep(500); // 0.5ms
for (GPUBatch& batch : batches) {
// If batch is ready to have new data loaded
if (batch.state == GPUBatch::State::EMPTY) {
// Add new DataM if free space
for (; processing.size() < QUEUE_SIZE && mi < M_inc; mi++) {
uint64_t m = M_start + mi;
if (gcd(m, D) > 1) continue;
std::string line;
// Loop can be pragma omp parallel if this is placed in critical section
std::getline(unknown_file, line);
std::istringstream iss_line(line);
// Can skip if m < M_RESUME without parsing line here
if (m < config.mskip) continue;
DataM test(m);
uint64_t m_parsed = parse_unknown_line(
config, helper, m, iss_line, test.unknowns[0], test.unknowns[1]);
assert(m_parsed == (uint64_t) m);
mpz_init(test.center);
mpz_mul_ui(test.center, K, test.m);
processing[test.m] = std::move(test);
}
// Grap some entries from each item in M
{
batch.i = 0;
// Turn off all entries in batch
std::fill_n(batch.active.begin(), BATCH_GPU, false);
// Mark all results as invalid
std::fill_n(batch.result.begin(), BATCH_GPU, -1);
for (auto& pair : processing) {
auto& interval = pair.second;
if (interval.state != DataM::State::READY) {
// Already part of some other batch
continue;
}
for (size_t j = 0; j < SEQUENTIAL_IN_BATCH; j++) {
assert(! (interval.p_found && interval.n_found) );
int gpu_i = batch.i; // [GPU] batch index
batch.data_i[gpu_i] = interval.m; // [Data] index for GPU Batch
if (!interval.p_found) {
if (interval.p_tests < interval.unknowns[0].size()) {
batch.p_or_n[gpu_i] = 0;
mpz_sub_ui(*batch.z[gpu_i], interval.center, interval.unknowns[0][interval.p_tests]);
batch.unknown_i[gpu_i] = interval.p_tests++;
} else {
// Haven't found previous prime, but run out of unknowns to test
interval.prev_p = -1;
interval.overflow = 1; // Indicates prev side has overflowed unknowns
break;
}
} else {
assert(!interval.n_found);
if (interval.n_tests < interval.unknowns[1].size()) {
batch.p_or_n[gpu_i] = 1;
mpz_add_ui(*batch.z[gpu_i], interval.center, interval.unknowns[1][interval.n_tests]);
batch.unknown_i[gpu_i] = interval.n_tests++;
} else {
// Haven't found next prime, but run out of unknowns to test
interval.next_p = -1;
interval.overflow = 1; // Indicates next side has overflowed unknowns
break;
}
}
//gmp_printf("batch[%d] = %d,%d = %d | %Zd\n", gpu_i, i, j, interval.m, *batch.z[gpu_i]);
interval.state = DataM::State::RUNNING;
batch.active[gpu_i] = true;
batch.i++;
if (batch.i == BATCH_GPU) break;
}
if (batch.i == BATCH_GPU) break;
}
// Every batch should be full unless we are almost done
// technically if many overflowed results this could not be true.
assert( (mi >= M_inc) || (batch.i == BATCH_GPU) );
}
// Mark batch as ready for GPU processing
batch.state = GPUBatch::State::READY;
}
// If PRP result has been written to all entries by GPU
if (batch.state == GPUBatch::State::RESULT_WRITTEN) {
// Read results, mark any found primes, and possible finalize m-interval
{
for (size_t i = 0; i < BATCH_GPU; i++) {
if (!batch.active[i]) {
continue;
}
// Verify GPU really did write the result
assert (batch.result[i] == 0 || batch.result[i] == 1);
DataM &interval = processing.at(batch.data_i[i]);
// Mark interval as being ready again
interval.state = DataM::State::READY;
if (batch.result[i]) {
// Found prime in last partial batch of unknowns, no longer overflowed
interval.overflow = 0;
int offset_i = batch.unknown_i[i];
if (batch.p_or_n[i] == 0) {
if (interval.p_found) {
/*
cout << "Found two previous primes for m=" << interval.m << endl;
cout << "\t" << interval.prev_p << " vs "
<< interval.unknowns[0][offset_i] << "(" << offset_i << ")" << endl;
*/
continue;
}
// prev_prime found
assert(interval.p_tests > 0 );
interval.p_found = true;
interval.prev_p = interval.unknowns[0][offset_i];
} else {
if (interval.n_found) {
/*
cout << "Found two next primes for m=" << interval.m << endl;
cout << "\t" << interval.next_p << " vs "
<< interval.unknowns[1][offset_i] << "(" << offset_i << ")" << endl;
*/
continue;
}
// next_prime found (and done)
assert(interval.p_found );
assert(interval.n_tests > 0 );
interval.n_found = true;
interval.next_p = interval.unknowns[1][offset_i];
}
}
}
}
// Finalize any finished (or overflowed) results from processing
{
// Push Out-Of-Sieve gaps to overflow queue and notify that thread
{
bool pushed_to_overflow = false;
for (auto& pair : processing) {
auto& interval = pair.second;
if (interval.overflow && interval.state == DataM::State::READY) {
if (interval.prev_p == -1) {
assert(interval.p_tests > 0);
stats.s_gap_out_of_sieve_prev += 1;
}
if (interval.next_p == -1) {
assert(interval.p_tests > 0);
stats.s_gap_out_of_sieve_next += 1;
}
// Push to overflow and wake up that thread
interval.state = DataM::State::RUNNING;
{
std::unique_lock<std::mutex> lock(overflow_mtx);
overflowed.push_back(&interval);
pushed_to_overflow = true;
}
}
}
// TODO print warning if overflowed.size() is very large
if (pushed_to_overflow) {
overflow_cv.notify_one();
}
}
{
// Update any items finished in overflow as ready to be loaded into batches again
for (auto& pair : processing) {
auto& interval = pair.second;
if (interval.state == DataM::State::OVERFLOW_DONE) {
interval.state = DataM::State::READY;
}
}
}
// Ugly code that allows for remove during iteration
auto it = processing.begin();
while (it != processing.end()) {
auto& interval = it->second;
int prev_p = interval.prev_p;
int next_p = interval.next_p;
// Potentially do Side-Skip if prev_p is not very large.
// Only consider if prev_p just found (p_found, n_test == 0)
if (interval.p_found && interval.n_tests == 0 && !interval.n_found) {
// TODO improve this with constant and logging
float prev_merit = prev_p / (K_log + log(interval.m));
/**
* TODO better math
* With Y = 24
* 50% of gaps with merit > 24 merit have prev > 12 merit
* only test 1/2^(12-3) = 1/512 gaps
* 75% of gaps with merit > 24 merit have prev > 6 merit
* test 1/2^(6-3) = 1/8 gaps
*/
float MIN_MERIT_TO_CONTINUE = min_merit / 2 - 2;
if (prev_merit < MIN_MERIT_TO_CONTINUE) {
stats.s_skips_after_one_side += 1;
bool is_last = (mi >= M_inc) && processing.size() == 1;
stats.process_results(config, interval.m, is_last,
interval.unknowns[0].size(), interval.unknowns[1].size(),
prev_p, next_p,
interval.p_tests, interval.n_tests, prev_merit);
mpz_clear(interval.center);
it = processing.erase(it); // Erase this element
continue;
}
}
if (!interval.p_found || !interval.n_found) {
++it;
continue;
}
assert( prev_p > 0 && next_p > 0 );
float merit = (next_p + prev_p) / (K_log + log(interval.m));
if (merit > min_merit) {
// TODO: Record finished mi in log file / db.
printf("%-5d %.4f %ld * %ld#/%ld -%d to +%d\n",
(next_p + prev_p), merit, interval.m, P, D, prev_p, next_p);
}
bool is_last = (mi >= M_inc) && processing.size() == 1;
stats.process_results(config, interval.m, is_last,
interval.unknowns[0].size(), interval.unknowns[1].size(),
prev_p, next_p,
interval.p_tests, interval.n_tests, merit);
mpz_clear(interval.center);
it = processing.erase(it); // Erase this element
}
}
// Result batch to EMPTY
batch.state = GPUBatch::State::EMPTY;
}
}
}
// ----- cleanup
{
mpz_clear(K);
}
}
void prime_gap_test(struct Config config) {
// Setup test runner
printf("BITS=%d\tWINDOW_BITS=%d\n", BITS, WINDOW_BITS);
printf("PRP/BATCH=%ld\tM/BATCH=%ld\n",
BATCH_GPU, BATCH_GPU/SEQUENTIAL_IN_BATCH);
printf("THREADS/PRP=%d\n", THREADS_PER_INSTANCE);
assert( BATCH_GPU == 1024 || BATCH_GPU == 2048 || BATCH_GPU == 4096 ||
BATCH_GPU == 8192 || BATCH_GPU ==16384 || BATCH_GPU ==32768 );
assert( SEQUENTIAL_IN_BATCH == 1 || SEQUENTIAL_IN_BATCH == 2 || SEQUENTIAL_IN_BATCH == 4 );
{
mpz_t K;
init_K(config, K);
size_t N_bits = mpz_sizeinbase(K, 2) + log2(config.mstart + config.minc);
mpz_clear(K);
// P# roughly 349, 709, 1063, 1447
for (size_t bits : {512, 1024, 1536, 2048, 3036, 4096}) {
if (N_bits <= bits) {
if (bits < BITS) {
printf("\nFASTER WITH `make gap_test_gpu BITS=%ld` (may require `make clean`)\n\n", bits);
}
break;
}
}
assert( N_bits < BITS ); // See last debug line.
assert( BITS <= (1 << (2 * WINDOW_BITS)) );
}
is_running = true;
std::thread load_thread(load_batch_thread, config, BATCHED_M);
std::thread gpu_thread(run_gpu_thread, config);
std::thread overflow_thread(run_overflow_thread, config);
load_thread.join();
is_running = false;
overflow_cv.notify_one(); // wake up overflow thread
gpu_thread.join();
overflow_thread.join();
}