-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgap_test_stats.py
executable file
·634 lines (496 loc) · 20.6 KB
/
gap_test_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
#!/usr/bin/env python3
#
# Copyright 2020 Seth Troisi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import array
import itertools
import math
import random
import time
from collections import defaultdict
from dataclasses import dataclass
import gmpy2
import sqlite3
import gap_utils
@dataclass
class StatCounters:
start_t: float
last_print_t: float
will_test = 0
tested = 0
test_time = 0
# Total unknowns on previous / next side
t_unk_prev = 0
t_unk_next = 0
# Total PRP tests performed
total_prp_tests = 0
# Number of times one side was skipped
one_side_skips = 0
# Number of prev_prime / next_prime that exceeded SIEVE_LENGTH
gap_out_of_sieve_prev = 0
gap_out_of_sieve_next = 0
# Highest merit seen recently, m of that merit
best_merit_interval = 0
best_merit_interval_m = -1
prob_record_all = 0.0
prob_min_merit = 0.0
# handles one sided testes
prob_record_processed = 0.0
sides_processed = 0.0
# To validate one sided prob is working
# TODO: validate in some way (value trends to zero?)
prob_one_side_delta = 0.0
count_record = 0
count_min_merit = 0
@dataclass
class GapData:
first_m = -1
last_m = -1
valid_mi = []
# Values for each m in valid_mi
expected_prev = []
expected_next = []
expected_gap = []
prob_merit_gap = []
prob_record_gap = []
# Because of --prp-top-percent may be less than |valid_mi|
experimental_side = []
experimental_gap = []
@dataclass
class Misc:
prob_gap_side = defaultdict(float)
prob_gap_comb = defaultdict(float)
test_unknowns = {}
def config_hash(config):
"""Shared with gap_stats to load/save range rid"""
h = config.mstart
h = h * 31 + config.minc
h = h * 31 + config.p
h = h * 31 + config.d
h = h * 31 + config.sieve_length
h = h * 31 + config.max_prime
return h % (2 ** 64)
def load_range(conn, args):
"""Load range data for args"""
cursor = conn.execute(
"SELECT * FROM range WHERE rid = ?",
(config_hash(args),))
# Set row factor for just this cursor
cursor.row_factory = sqlite3.Row
return cursor.fetchone()
def load_records(conn, log_N):
# Find records merit <= gap * log_N
# Stop at merit = 35
# NOTE: to make sure 'count(records)' still counts after a
# found record is submitted subtract a small amount from merit
rv = conn.execute(
"SELECT gapsize FROM gaps "
"WHERE gapsize > merit * ? - 0.001"
" AND gapsize < 35 * ?",
(log_N, log_N))
records = [g[0] for g in rv]
# Handle missing gaps
SMALLEST_MISSING = 113326
largest_likely = int(log_N * 30)
if SMALLEST_MISSING < largest_likely:
rv = conn.execute(
"SELECT gapsize FROM gaps "
"WHERE gapsize BETWEEN ? AND ?",
(SMALLEST_MISSING, largest_likely))
# Any number not present in this list is 'missing'
all_gaps = range(SMALLEST_MISSING, largest_likely + 1, 2)
missing = list(set(all_gaps) - set(g[0] for g in rv))
records.extend(missing)
return tuple(sorted(records))
def load_existing(conn, args):
rv = conn.execute(
"SELECT m, prev_p, next_p FROM result"
" WHERE P = ? AND D = ? AND m BETWEEN ? AND ?",
(args.p, args.d, args.mstart, args.mstart + args.minc - 1))
return {row[0]: (row[1], row[2]) for row in rv}
def _zip_to_array(cursor):
"""convert rows to columns"""
init = True
for row in cursor:
if init:
init = False
arrays = [array.array('f') for _ in row]
for i, v in enumerate(row):
arrays[i].append(v)
if init:
exit("Empty m_stats for this range, have you run gap_stats?")
return arrays
def load_probs_only(conn, args):
data = GapData()
rv = conn.execute(
"SELECT prob_merit, prob_record"
" FROM m_stats WHERE P = ? AND D = ? AND m BETWEEN ? AND ?",
(args.p, args.d, args.mstart, args.mstart + args.minc - 1))
data.prob_merit_gap, data.prob_record_gap = _zip_to_array(rv)
return data
def load_stats(conn, args):
data = GapData()
misc = Misc()
rv = conn.execute(
"SELECT e_gap_prev, e_gap_next, e_gap_prev + e_gap_next,"
" prev_p, next_p,"
" prob_merit, prob_record"
" FROM m_stats WHERE P = ? AND D = ? AND m BETWEEN ? AND ?",
(args.p, args.d, args.mstart, args.mstart + args.minc - 1))
# Will fail if non-present
(data.expected_prev, data.expected_next, data.expected_gap,
gap_prev, gap_next,
data.prob_merit_gap, data.prob_record_gap) = _zip_to_array(rv)
interleaved = itertools.chain(*itertools.zip_longest(gap_prev, gap_next))
data.experimental_side = array.array('i', (int(s) for s in interleaved if s and s > 0))
zipped_sum_gen = (int(p + n) for p, n in zip(gap_prev, gap_next) if p > 0 and n > 0)
data.experimental_gap = array.array('i', zipped_sum_gen)
rv = conn.execute(
"SELECT gap, prob_combined, prob_low_side, prob_high_side "
"FROM range_stats where rid = ?",
(config_hash(args),))
for row in rv:
gap = row[0]
misc.prob_gap_comb[gap] += row[1]
misc.prob_gap_side[gap] += row[2] / 2
misc.prob_gap_side[gap] += row[3] / 2
return data, misc
def save(conn, p, d, m, next_p, prev_p, merit,
n_tests, p_tests, test_time):
assert p in range(201, 80000, 2), (p, d, m)
conn.execute(
"REPLACE INTO result(P,D,m,next_p,prev_p,merit)"
"VALUES(?,?,?, ?,?, ?)",
(p, d, m, next_p, prev_p, round(merit, 4)))
conn.execute(
"""UPDATE m_stats
SET next_p=?, prev_p=?, merit=?,
prp_next=prp_next+?, prp_prev=prp_prev+?,
test_time=test_time+?
WHERE p=? AND d=? AND m=?""",
(next_p, prev_p, round(merit, 4),
n_tests, p_tests, test_time, p, d, m))
# Commit on average every 200 seconds (always commit if test_time > 200).
# Keeps number of raw commits down when testing small p#
# conn.commit() in gap_test.py should prevent losing results during cleanup
if 200 * random.random() < test_time:
conn.commit()
def prob_prime_sieve_length(M, K, D, P, prob_prime, K_digits, SL, max_prime):
assert max_prime >= 10 ** 6, max_prime
# From Mertens' 3rd theorem
gamma = 0.577215665
unknowns_after_sieve = 1.0 / (math.log(max_prime) * math.exp(gamma))
prob_prime_after_sieve = prob_prime / unknowns_after_sieve
P_primes = [p for p in range(2, P+1) if gmpy2.is_prime(p)]
prob_prime_coprime_p = 1
for prime in P_primes:
prob_prime_coprime_p *= (1 - 1 / prime)
K_coprime = [math.gcd(K, i) == 1 for i in range(SL + 1)]
# See "Optimizing Choice Of D" in THEORY.md for why this is required
count_coprime_p = 0
m_tests = [M + i for i in range(100) if math.gcd(M + i, D) == 1][:6]
for m in m_tests:
N_mod_D = m * K % D
for i in range(1, SL + 1):
if K_coprime[i] and math.gcd(N_mod_D + i, D) == 1:
# assert gmpy2.gcd(N, K*D) == 1,
count_coprime_p += 1
count_coprime_p //= len(m_tests)
chance_coprime_composite = 1 - prob_prime / prob_prime_coprime_p
prob_gap_shorter_hypothetical = chance_coprime_composite ** count_coprime_p
# Printed by C code, less interesting here
#print("\t{:.3%} of {} digit numbers are prime".format(
# prob_prime, K_digits))
#print("\t{:.3%} of 0tests should be prime ({:.1f}x speedup)".format(
# prob_prime_after_sieve, 1 / unknowns_after_sieve))
print("\t~2x{:.1f} = {:.1f} PRP tests per m".format(
1 / prob_prime_after_sieve, 2 / prob_prime_after_sieve))
print("\tsieve_length={} is insufficient ~{:.2%} of time".format(
SL, prob_gap_shorter_hypothetical))
print()
return prob_prime_after_sieve
def calculate_expected_gaps(
SL, min_merit_gap, prob_nth, prob_longer, log_n, unknowns, data):
for i, side in enumerate(unknowns):
expected_length = 0
for v, prob in zip(side, prob_nth):
expected_length += abs(v) * prob
# expected to encounter a prime at distance ~= ln(n)
prob_gap_longer = prob_nth[len(side)]
assert prob_gap_longer < 0.01, (prob_gap_longer, len(side))
expected_length += (SL + log_n) * prob_gap_longer
if i == 0:
data.expected_prev.append(expected_length)
else:
data.expected_next.append(expected_length)
data.expected_gap.append(data.expected_prev[-1] + data.expected_next[-1])
p_merit = 0
for prob_i, lower in zip(prob_nth, unknowns[0]):
for prob_j, upper in zip(prob_nth, unknowns[1]):
prob_joint = prob_i * prob_j
gap = -lower + upper
if gap >= min_merit_gap:
p_merit += prob_joint
if prob_joint < 1e-9:
break
else:
# gap = (K + SL+1) - (K - lower) = SL+1 - lower
if -lower + SL + 1 > min_merit_gap:
p_merit += prob_i * prob_longer[len(unknowns[1])]
for prob_j, upper in zip(prob_nth, unknowns[1]):
if SL + 1 + upper > min_merit_gap:
p_merit += prob_j * prob_longer[len(unknowns[0])]
if 2 * SL + 1 > min_merit_gap:
p_merit += prob_longer[len(unknowns[0])] * prob_longer[len(unknowns[1])]
assert 0 <= p_merit <= 1.00, (p_merit, unknowns)
data.prob_merit_gap.append(p_merit)
def validate_prob_record_merit(
args, data_db, K_log, prob_prime_after_sieve):
"""Validate gap_stats with slow python calculation"""
print("\tSLOWLY calculating prob_merit_gap for validation purpose")
import scipy.stats
# Geometric distribution
prob_nth = []
prob_longer = []
prob_gap_longer = 1
while prob_gap_longer > 1e-13:
prob_nth.append(prob_gap_longer * prob_prime_after_sieve)
prob_longer.append(prob_gap_longer)
prob_gap_longer *= (1 - prob_prime_after_sieve)
assert min(prob_nth) > 0
assert min(prob_longer) > 0
data = GapData()
with open(args.unknown_filename, "rb") as unknown_file_repeat:
for line in unknown_file_repeat.readlines():
m, _, _, unknowns = gap_utils._parse_unknown_line(line)
log_n = K_log + math.log(m)
min_merit_gap = int(args.min_merit * log_n)
calculate_expected_gaps(
args.sieve_length, min_merit_gap, prob_nth, prob_longer,
log_n, unknowns,
# Results saved to data / misc
data)
def lin_reg(name, a, b):
# p_val is "two-sided p-val for null hypothesis that the slope is zero."
slope, intercept, r_val, p_val, std_err = scipy.stats.linregress(a, b)
print("\t{:15} | scale: {:.3f}, r^2: {:.2f}".format(name, slope, r_val))
print("\t\t", p_val, std_err)
# Validate several distributions have high correlation & r^2
lin_reg("expected gap ", data_db.expected_gap, data.expected_gap)
lin_reg("expected prev", data_db.expected_prev, data.expected_prev)
lin_reg("expected next", data_db.expected_next, data.expected_next)
lin_reg("expected prev", data_db.prob_merit_gap, data.prob_merit_gap)
def _sieve_side(SL, primes):
is_coprime = [True for _ in range(SL+1)]
for p in primes:
for i in range(0, len(is_coprime), p):
is_coprime[i] = False
return is_coprime
def setup_extended_gap(SL, P, D, prob_prime):
"""
Extends from SL to 2*SL based on coprime K
Used in prob_record_one_sided
"""
P_primes = [p for p in range(2, P + 1) if gmpy2.is_prime(p)]
prob_prime_coprime = prob_prime
for p in P_primes:
# multiples of d are handled in prob_record_one_side
prob_prime_coprime /= (1 - 1 / p)
is_coprime = _sieve_side(2 * SL, (p for p in P_primes if D % p != 0))
for p in P_primes:
if D % p == 0:
continue
for i in range(0, len(is_coprime), p):
is_coprime[i] = False
coprime_X = [i for i, v in enumerate(is_coprime) if v and i > SL]
return prob_prime_coprime, coprime_X
def setup_bitarray(SL, P, D):
"""
Extends from [-SL, SL] based on coprime K
Used in parse_compressed_line for --bitcompress'ed lines
"""
D_primes = [p for p in range(2, P + 1) if D % p == 0 and gmpy2.is_prime(p)]
K_primes = [p for p in range(2, P + 1) if gmpy2.is_prime(p) and D % p != 0]
# [0, SL]
is_coprime = _sieve_side(SL, K_primes)
# [-Sl, SL]
is_offset_coprime= is_coprime[::-1] + is_coprime[1:]
coprime_X = [x for x, v in zip(range(-SL, SL+1), is_offset_coprime) if v]
return D_primes, is_offset_coprime, coprime_X
def prob_record_one_sided(
record_gaps, megagap, other_side,
unknowns_next, prob_prime_after_sieve,
m, K_mod_d, d, coprime_extended, prob_prime_coprime):
"""Probability of record given one side"""
assert other_side > 0
prob_record = 0
prob_nth = 1
for unknown in unknowns_next:
test_gap = unknown + other_side
if (megagap and test_gap > megagap) or (not megagap and test_gap in record_gaps):
prob_record += prob_nth * prob_prime_after_sieve
prob_nth *= 1 - prob_prime_after_sieve
for x in coprime_extended:
test_gap = x + other_side
# Would use -m if wanted to consider unknowns_prev
if math.gcd(m * K_mod_d + x, d) > 1:
if (megagap and test_gap > megagap) or (not megagap and test_gap in record_gaps):
prob_record += prob_nth * prob_prime_coprime
prob_nth *= 1 - prob_prime_coprime
# Anything larger than 2*SL is likely record
return prob_record + prob_nth
def determine_test_threshold(args, data):
percent = args.prp_top_percent
valid_m = (args.mstart + mi for mi in data.valid_mi)
if not percent or percent == 100:
return 0, {
m: (p_merit, p_record) for m, p_merit, p_record in zip(
valid_m, data.prob_merit_gap, data.prob_record_gap)
}
if args.megagap:
data.prob_record_gap = data.prob_merit_gap
assert 1 <= percent <= 99
# Could be several million data points.
best_probs = sorted(data.prob_record_gap, reverse=True)
prob_threshold = best_probs[round(len(best_probs) * percent / 100)]
del best_probs
# XXX: Could be array of (m, prob, prob) which would be MUCH smaller
# Would make run_in_parallel loop slightly harder
m_probs = {
m: (p_merit, p_record) for m, p_merit, p_record in zip(
valid_m, data.prob_merit_gap, data.prob_record_gap)
if p_record >= prob_threshold
}
# No longer needed
del data.prob_merit_gap[:]
del data.prob_record_gap[:]
return prob_threshold, m_probs
def should_print_stats(
args, sc, data, m,
unknown_l, unknown_u,
prev_p, next_p):
stop_t = time.time()
print_secs = stop_t - sc.last_print_t
print_small = (1, 10, 30, 100, 300, 1000, 3000, 5000, 10000, 30000, 100000, 300000)
# <1000 => 1e6, <2000 => 1e5, <
print_every = 10 ** max(0, 16 - int(math.log2(args.p)))
assert 1 < print_every <= 10 ** 7, args.p
# Print a little bit if we resume but mostly as we test.
if ((args.megagap and sc.tested % 10 == 0)
or sc.tested in print_small
or (sc.tested and sc.tested % print_every == 0)
or m == data.last_m or print_secs > 3600): # 24/day
secs = stop_t - sc.start_t
print("\t{:3d} {:4d} <- unknowns -> {:-4d}\t{:4d} <- gap -> {:-4d}".format(
m, unknown_l, unknown_u, prev_p, next_p))
def roundSig(n, sig):
return '{:g}'.format(float('{:.{p}g}'.format(n, p=sig)))
def rate(count, time):
# Want 3 sig figs which is hard in python
if count and count < time:
return "{} secs/test".format(roundSig(time / count, 3))
else:
return "{}/sec".format(roundSig(count / max(1e-5, time), 3))
timing = rate(sc.tested, secs)
timing_threads = rate(sc.tested, sc.test_time)
# Stats!
if sc.tested:
print("\t tests {:<9d} ({}, {}) {:.0f}, {:.0f} secs".format(
sc.tested, timing, timing_threads, secs, sc.test_time))
total_unknown = sc.t_unk_prev + sc.t_unk_next
if total_unknown:
print("\t unknowns {:<9d} (avg: {:.2f}), {:.2%} composite "
"{:.2%} <- % -> {:.2%}".format(
total_unknown, total_unknown / sc.tested,
(1 - total_unknown / ((2 * args.sieve_length + 1) * sc.tested)),
sc.t_unk_prev / total_unknown,
sc.t_unk_next / total_unknown))
prp_tests = sc.total_prp_tests
if sc.tested and prp_tests:
print("\t prp tests {:<9d} (avg: {:.2f}/side, {:.2f}/m) ({:.3f} tests/sec)".format(
prp_tests, prp_tests / sc.sides_processed, prp_tests / sc.tested, prp_tests / secs))
if sc.one_side_skips:
avg_prob_side = sc.prob_record_processed / sc.sides_processed
avg_prob_no_skip = sc.prob_record_all / (2 * sc.tested)
print("\t side skips {:<9d} ({:.1%}) "
"(prob_record {:.3g}/side, {:.3g}/m/2, {:+.1%})".format(
sc.one_side_skips, sc.one_side_skips / sc.tested,
avg_prob_side, avg_prob_no_skip,
avg_prob_side / avg_prob_no_skip - 1))
print("\t sum(prob_min_merit): {:7.5g}, {:.3g}/day\tfound: {}".format(
sc.prob_min_merit, 86400 / secs * sc.prob_min_merit, sc.count_min_merit))
print("\t sum(prob_record): {:7.5g}, {:.3g}/day\tfound: {}".format(
sc.prob_record_processed, sc.prob_record_processed / secs * 86400, sc.count_record))
if sc.gap_out_of_sieve_prev or sc.gap_out_of_sieve_next:
print("\t fallback prev_gap {} ({:.1%}), next_gap {} ({:.1%})".format(
sc.gap_out_of_sieve_prev, sc.gap_out_of_sieve_prev / sc.tested,
sc.gap_out_of_sieve_next, sc.gap_out_of_sieve_next / sc.tested))
print("\t merit {:<6.3f} (at m={})".format(
sc.best_merit_interval, sc.best_merit_interval_m))
return True
return False
def process_result(conn, args, record_gaps, m_probs, data, sc, result):
"""Handles new results"""
(m, r_log_n, unknown_l, unknown_u,
n_tests, next_p,
p_tests, prev_p,
prob_record, new_prob_record,
test_time) = result
gap = next_p + prev_p
merit = gap / r_log_n
save(conn, args.p, args.d, m, next_p, prev_p, merit, n_tests, p_tests, test_time)
if next_p < 0 or prev_p < 0:
# partial result don't print anything
return
sc.tested += 1
sc.test_time += test_time
sc.t_unk_prev += unknown_l
sc.t_unk_next += unknown_u
sc.prob_min_merit += m_probs[m][0]
if merit > args.min_merit:
sc.count_min_merit += 1
if gap in record_gaps:
sc.count_record += 1
assert m_probs[m][1] == prob_record
sc.prob_record_all += prob_record
# Should mirror logic in process_line
if next_p:
sc.prob_record_processed += prob_record
sc.sides_processed += 2
else:
sc.one_side_skips += 1
sc.prob_record_processed += prob_record - new_prob_record
sc.sides_processed += 1
sc.prob_one_side_delta += prob_record - new_prob_record
sc.total_prp_tests += p_tests
sc.gap_out_of_sieve_prev += prev_p > args.sieve_length
sc.total_prp_tests += n_tests
sc.gap_out_of_sieve_next += next_p > args.sieve_length
is_record = gap in record_gaps
if is_record or merit > args.min_merit:
print("{} {:.4f} {} * {}#/{} -{} to +{}{}".format(
gap, merit, m, args.p, args.d, prev_p, next_p,
"\tRECORD!" if is_record else ""))
if merit > sc.best_merit_interval:
sc.best_merit_interval = merit
sc.best_merit_interval_m = m
if should_print_stats(
args, sc, data,
m,
unknown_l, unknown_u,
prev_p, next_p,
):
sc.best_merit_interval = 0
sc.best_merit_interval_m = -1
sc.last_print_t = time.time()