-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmoodmirror-google.py
117 lines (89 loc) · 3.35 KB
/
moodmirror-google.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import picamera
import json
import io
import os
from google.cloud import vision
from google.cloud.vision.likelihood import Likelihood
from neopixel import *
# Set this to the .json file downloaded from the GCP management console
api_keys = "/home/pi/[GCP-API-KEY-FILE].json"
# LED strip configuration:
LED_COUNT = 150 # Number of LED pixels.
LED_PIN = 18 # GPIO pin connected to the pixels (must support PWM!).
LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz)
LED_DMA = 5 # DMA channel to use for generating signal (try 5)
LED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest
LED_INVERT = False # True to invert the signal (when using NPN transistor level shift)
def set_color(strip, color):
for i in range(strip.numPixels()):
strip.setPixelColor(i, color)
strip.show()
# Capture a photo from the pi camera
def takephoto():
camera = picamera.PiCamera()
camera.capture('image.jpg')
# Convert the likelihood responses Google gives to a numeric score
def likelihood_to_score(val):
return {
Likelihood.VERY_UNLIKELY: 0.0,
Likelihood.UNKNOWN: 0.0,
Likelihood.UNLIKELY: 0.25,
Likelihood.POSSIBLE: 0.50,
Likelihood.LIKELY: 0.75,
Likelihood.VERY_LIKELY: 1.00
}[val]
# Send an image file on disk to the cloud for face and emotion detection
def detect_faces(path):
"""Detects faces in an image."""
vision_client = vision.Client()
# Read the image from disk
with io.open(path, 'rb') as image_file:
content = image_file.read()
image = vision_client.image(content=content)
# Send the image to Google
faces = image.detect_faces()
# Combine the responses, in case there were multiple faces
anger = []
joy = []
surprise = []
sorrow = []
for face in faces:
anger.append(likelihood_to_score(face.emotions.anger))
joy.append(likelihood_to_score(face.emotions.joy))
surprise.append(likelihood_to_score(face.emotions.surprise))
sorrow.append(likelihood_to_score(face.emotions.sorrow))
print('faces: {}'.format(len(anger)))
# Calculate the aggregate color
# default to black (off)
R = 0
G = 0
B = 0
if len(anger) > 0:
a_anger = sum(anger) / len(anger)
a_joy = sum(joy) / len(joy)
a_surprise = sum(surprise) / len(surprise)
a_sorrow = sum(sorrow) / len(sorrow)
# Mix the colors
R, G, B = ink_add_for_rgb([
(255, 0, 0, a_anger),
(255, 255, 84, a_joy),
( 89, 189, 255, a_surprise),
( 81, 81, 255, a_sorrow)
])
print('R: {}'.format(R))
print('G: {}'.format(G))
print('B: {}'.format(B))
return Color(int(R), int(G), int(B))
def main():
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = api_keys
# Create NeoPixel object with appropriate configuration.
strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS)
# Intialize the library (must be called once before other functions).
strip.begin()
# TODO: Make this a loop
takephoto()
color = detect_faces("image.jpg")
set_color(strip, color)
if __name__ == '__main__':
main()