-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathhead.py
42 lines (39 loc) · 1.6 KB
/
head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import theano
import theano.tensor as T
import numpy as np
from theano_toolkit import utils as U
def softmax(x):
e_x = T.exp(x - T.max(x,axis=-1,keepdims=True))
out = e_x / T.sum(e_x,axis=-1,keepdims=True)
return out
def build(head_count, mem_width, shift_width):
outputs = [ ("write_add", mem_width, T.tanh),
("write_erase", mem_width, T.nnet.sigmoid),
("write_key", mem_width, T.tanh), # change to T.tanh?
("read_key", mem_width, T.tanh),
("write_shift", shift_width, softmax),
("write_beta", 1, T.nnet.softplus),
("write_gamma", 1, lambda x:T.nnet.softplus(x) + 1),
("write_g", 1, T.nnet.sigmoid),
("read_shift", shift_width, softmax),
("read_beta", 1, T.nnet.softplus),
("read_gamma", 1, lambda x:T.nnet.softplus(x) + 1),
("read_g", 1, T.nnet.sigmoid), ]
head_size = sum(w for _,w,_ in outputs)
total_size = head_size * head_count
def heads(X):
# X: batch_size x controller_output_size
X_grouped = X\
.reshape((X.shape[0],head_count,head_size))\
.dimshuffle(1,0,2)
result = []
for head_id in xrange(head_count):
head_params = {}
start_idx = 0
for name,size,act in outputs:
head_params[name] = \
act(X_grouped[head_id,:,start_idx:start_idx + size])
start_idx += size
result.append(head_params)
return result
return total_size,heads