-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathmodel.py
97 lines (81 loc) · 3.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import theano
import theano.tensor as T
import numpy as np
import head
import feedforward
import ntm
def build(P, input_size, output_size, mem_size, mem_width, controller_size):
head_count = 1
P.memory_init = np.random.randn(mem_size, mem_width)
weight_init_params = []
for i in xrange(head_count):
P['read_weight_init_%d' % i] = 0.01 * np.random.randn(mem_size)
P['write_weight_init_%d' % i] = 0.01 * np.random.randn(mem_size)
weight_init_params.append((P['read_weight_init_%d' % i],
P['write_weight_init_%d' % i]))
# weight_init_params.append((init,init))
heads_size, head_activations = head.build(
head_count=head_count,
mem_width=mem_width,
shift_width=3
)
print "Size of heads:", heads_size
def controller_activation(X):
return (head_activations(X[:, :heads_size]), X[:, heads_size:])
def output_inits(ins, outs):
init = feedforward.initial_weights(ins, outs)
init[:, heads_size:] = 0
return init
controller = feedforward.build_classifier(
P, "controller",
input_sizes=[input_size, mem_width],
hidden_sizes=[controller_size],
output_size=heads_size + output_size,
activation=T.tanh,
output_activation=controller_activation,
output_initial_weights=output_inits
)
ntm_step = ntm.build(mem_size, mem_width)
def process(X):
# input_sequences: batch_size x sequence_length x input_size
memory_init = P.memory_init / T.sqrt(T.sum(T.sqr(P.memory_init),
axis=1, keepdims=True))
batch_size = X.shape[0]
batch_size.name = 'batch_size'
ones = T.ones_like(X[:, 0, 0])
batch_memory_init = T.alloc(memory_init, batch_size, mem_size, mem_width)
batch_memory_init.name = 'batch_memory_init'
import head
batch_weight_inits = [
(
head.softmax(r) * ones.dimshuffle(0, 'x'),
head.softmax(w) * ones.dimshuffle(0, 'x')
) for r, w in weight_init_params]
def step(X, M_prev, *heads):
X.name = 'x[t]'
# weights [ batch_size x mem_size ]
# M_prev [ batch_size x mem_size x mem_width ]
weights_prev = zip(heads[0*head_count:1*head_count],
heads[1*head_count:2*head_count])
for r, w in weights_prev:
r.name = 'read_prev'
w.name = 'write_prev'
reads_prev = [T.sum(r.dimshuffle(0, 1, 'x') * M_prev, axis=1)
for r, _ in weights_prev]
heads, output = controller([X] + reads_prev)
M_curr, weights_curr = ntm_step(M_prev, heads, weights_prev)
return [M_curr] + \
[r for r, _ in weights_curr] +\
[w for _, w in weights_curr] +\
[output]
scan_outs, _ = theano.scan(
step,
sequences=[X.dimshuffle(1, 0, 2)],
outputs_info=[batch_memory_init] +
[r for r, _ in batch_weight_inits] +
[w for _, w in batch_weight_inits] +
[None]
)
outputs = scan_outs[-1]
return outputs.dimshuffle(1, 0, 2)
return process