-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSegment_Trees_Simple_Implementation.java
119 lines (98 loc) · 3.87 KB
/
Segment_Trees_Simple_Implementation.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class SegmentTrees {
/**
*Author: Gaurav Shrivastava
*/
// A utility function to print arrays
public static void print(int a[]){
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
System.out.println();
}
// Program for range minimum query using segment tree
// A utility function to get minimum of two numbers
public static int minVal(int x, int y) { return (x < y)? x: y; }
// A utility function to get the middle index from corner indexes.
public static int getMid(int s, int e) { return s + (e -s)/2; }
/* A recursive function to get the minimum value in a given range of array
indexes. The following are parameters for this function.
st --> Array of segment tree
index --> Index of current node in the segment tree. Initially 0 is
passed as root is always at index 0
ss & se --> Starting and ending indexes of the segment represented by
current node, i.e., st[index]
qs & qe --> Starting and ending indexes of query range */
public static int RMQUtil(int st[], int ss, int se, int qs, int qe, int index)
{
// If segment of this node is a part of given range, then return the
// min of the segment
if (qs <= ss && qe >= se)
return st[index];
// If segment of this node is outside the given range
if (se < qs || ss > qe)
return Integer.MAX_VALUE;
// If a part of this segment overlaps with the given range
int mid = getMid(ss, se);
return minVal(RMQUtil(st, ss, mid, qs, qe, 2*index+1),
RMQUtil(st, mid+1, se, qs, qe, 2*index+2));
}
// Return minimum of elements in range from index qs (quey start) to
// qe (query end). It mainly uses RMQUtil()
public static int RMQ(int st[], int n, int qs, int qe)
{
// Check for erroneous input values
if (qs < 0 || qe > n-1 || qs > qe)
{
System.out.print("Invalid Input");
return -1;
}
return RMQUtil(st, 0, n-1, qs, qe, 0);
}
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
public static int constructSTUtil(int arr[], int ss, int se, int st[], int si)
{
// If there is one element in array, store it in current node of
// segment tree and return
if (ss == se)
{
st[si] = arr[ss];
return arr[ss];
}
// If there are more than one elements, then recur for left and
// right subtrees and store the minimum of two values in this node
int mid = getMid(ss, se);
st[si] = minVal(constructSTUtil(arr, ss, mid, st, si*2+1),constructSTUtil(arr, mid+1, se, st, si*2+2));
return st[si];
}
/* Function to construct segment tree from given array. This function
allocates memory for segment tree and calls constructSTUtil() to
fill the allocated memory */
public static int[] constructST(int arr[], int n)
{
// Allocate memory for segment tree
//int x = (int)(Math.ceil(Math.log(n))); //Height of segment tree
//int max_size = 2*(int)Math.pow(2, x) - 1; //Maximum size of segment tree
int st[] = new int[n+n-1];
// Fill the allocated memory st
constructSTUtil(arr, 0, n-1, st, 0);
// Return the constructed segment tree
return st;
}
// Driver program to test above functions
public static void main(String[] args)throws Exception {
int a[] = {4,15,20,27,29,18,30,55,60};
int n = a.length;
int tree[] =constructST(a, n);
print(tree);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int query = Integer.parseInt(in.readLine());
while(query-- >0){
int l = Integer.parseInt(in.readLine());
int r = Integer.parseInt(in.readLine());
System.out.println("Minimum of values in range["+l+','+ r + "] is = "+RMQ(tree, n, l, r));
}
}
}