-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathconvert.py
184 lines (166 loc) · 6.95 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
#############################
##
## Image converter by learned models
##
#############################
import argparse
import os,glob
import json,codecs
from datetime import datetime as dt
import time
import numpy as np
import net
import random
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import serializers, Variable, cuda
from chainercv.utils import write_image
from chainercv.transforms import resize
from chainerui.utils import save_args
from arguments import arguments
from consts import dtypes
from dataset import Dataset
#os.environ['OMP_NUM_THREADS'] = '1'
if __name__ == '__main__':
args = arguments()
args.random = 0 ## necessary to infer crop size
outdir = os.path.join(args.out, dt.now().strftime('out_%Y%m%d_%H%M'))
if args.gpu >= 0:
try:
cuda.get_device_from_id(args.gpu).use()
print('Using GPU {}'.format(args.gpu))
except:
args.gpu = -1
print('No GPU found {}')
# infer model names
if not args.model_gen:
root=os.path.dirname(args.argfile)
args.model_gen=os.path.join(root,'enc_x{}.npz'.format(args.epoch))
if not os.path.isfile(args.model_gen):
args.model_gen = args.model_gen.replace('enc_x','gen_')
save_args(args, outdir)
chainer.config.autotune = True
chainer.config.dtype = dtypes[args.dtype]
## load images
if os.path.isfile(args.val):
dataset = Dataset(args.val, args.root, args.from_col, args.from_col, clipA=args.clipA, clipB=args.clipB, crop=(args.crop_height,args.crop_width), imgtype=args.imgtype, class_num=args.class_num, stack=args.stack, grey=args.grey, BtoA=args.btoa)
else:
print("Load Dataset from directory: {}".format(args.root))
dataset = Dataset('__convert__', args.root, [0], [0], clipA=args.clipA, clipB=args.clipB, crop=(args.crop_height,args.crop_width), imgtype=args.imgtype, class_num=args.class_num, stack=args.stack, grey=args.grey, BtoA=args.btoa, fn_pattern=args.fn_pattern)
#iterator = chainer.iterators.MultiprocessIterator(dataset, args.batch_size, n_processes=4, repeat=False, shuffle=False)
iterator = chainer.iterators.MultithreadIterator(dataset, args.batch_size, n_threads=3, repeat=False, shuffle=False)
# iterator = chainer.iterators.SerialIterator(dataset, args.batch_size,repeat=False, shuffle=False)
if args.ch != len(dataset[0][0]):
print("number of input channels is different during training.")
print("Input channels {}, Output channels {}".format(args.ch,args.out_ch))
## load generator models
if "enc" in args.model_gen:
if (args.gen_pretrained_encoder and args.gen_pretrained_lr_ratio == 0):
if "resnet" in args.gen_pretrained_encoder:
pretrained = L.ResNet50Layers()
print("Pretrained ResNet model loaded.")
else:
pretrained = L.VGG16Layers()
print("Pretrained VGG model loaded.")
if args.gpu >= 0:
pretrained.to_gpu()
enc = net.Encoder(args, pretrained)
else:
enc = net.Encoder(args)
print('Loading {:s}..'.format(args.model_gen))
serializers.load_npz(args.model_gen, enc)
dec = net.Decoder(args)
modelfn = args.model_gen.replace('enc_x','dec_y')
modelfn = modelfn.replace('enc_y','dec_x')
print('Loading {:s}..'.format(modelfn))
serializers.load_npz(modelfn, dec)
if args.gpu >= 0:
enc.to_gpu()
dec.to_gpu()
xp = enc.xp
is_AE = True
elif "gen" in args.model_gen:
gen = net.Generator(args)
print('Loading {:s}..'.format(args.model_gen))
serializers.load_npz(args.model_gen, gen)
if args.gpu >= 0:
gen.to_gpu()
xp = gen.xp
is_AE = False
elif "identity" == args.model_gen:
gen = F.identity
print("Identity..")
xp = np
is_AE = False
else:
print("Specify a learned model.")
exit()
## start measuring timing
os.makedirs(outdir, exist_ok=True)
start = time.time()
cnt = 0
salt = str(random.randint(1000, 999999))
for batch in iterator:
x_in, t_out = chainer.dataset.concat_examples(batch, device=args.gpu)
imgs = Variable(x_in)
with chainer.using_config('train', False), chainer.function.no_backprop_mode():
if is_AE:
x_out = dec(enc(imgs))
else:
x_out = gen(imgs)
## unfold stack and apply softmax
if args.stack>0:
x_out = x_out.reshape(x_out.shape[0]*args.stack,x_out.shape[1]//args.stack,x_out.shape[2],x_out.shape[3])
if args.class_num>0:
x_out = F.softmax(x_out)
if args.gpu >= 0:
imgs.to_cpu()
x_out.to_cpu()
imgs = imgs.data
out = x_out.data[args.stack//2::args.stack] ## use the only middle slice in the stack
## output images
for i in range(len(out)):
fn = dataset.get_img_path(cnt)
bfn,ext = os.path.splitext(fn)
bfn = os.path.basename(bfn)
relfn = os.path.relpath(fn,args.root)
os.makedirs(os.path.join(outdir, os.path.dirname(relfn)), exist_ok=True)
print("Processing {}".format(fn))
if args.class_num>0: ## TODO: stacked
#write_image((255*np.stack([out[i,2],np.zeros_like(out[i,0]),out[i,1]],axis=0)).astype(np.uint8), os.path.join(outdir,bfn)+".jpg")
path = os.path.join(outdir,relfn) ## preserve directory structures
np.save(path,out[i])
new = np.argmax(out[i],axis=0)
airvalue = 0
# print(new.shape)
else:
airvalue = None
new = dataset.var2img(out[i],args.clipB)
if args.vis_freq>0 and cnt%args.vis_freq==0:
print("raw value: {} -- {}".format(np.min(out[i]),np.max(out[i])))
print("image value: {} -- {}, ".format(np.min(new),np.max(new), new.shape))
# converted image
if args.imgtype=="dcm":
path = os.path.join(outdir,relfn) ## preserve directory structures
#print(path)
ref_dicom = dataset.overwrite_dicom(new,fn,salt,airvalue=airvalue)
ref_dicom.save_as(path)
elif args.imgtype=="npy":
path = os.path.join(outdir,bfn)
np.save(path,new)
elif args.imgtype=="txt":
path = os.path.join(outdir,bfn)+".txt"
np.savetxt(path,new,fmt="%d")
else:
# save image
path = os.path.join(outdir,bfn)+".jpg"
write_image(new, path)
cnt += 1
####
elapsed_time = time.time() - start
print ("\n{} images in {} sec".format(cnt,elapsed_time))
print ("Output in {}".format(outdir))
iterator.finalize()
exit()