-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcosshift.py
57 lines (49 loc) · 2.04 KB
/
cosshift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from __future__ import division
import numpy
from chainer.training import extension
class CosineShift(extension.Extension):
"""Trainer extension to shift an optimizer attribute in "steps".
This extension is also called before the training loop starts by default.
Args:
attr (str): Name of the optimizer attribute to adjust.
step (int): interval of restart
optimizer (~chainer.Optimizer): Target optimizer object. If it is None,
the main optimizer of the trainer is used.
"""
def __init__(self, attr, step, val_min=0, val_max=None, ratio=1.0,
optimizer=None):
self._attr = attr
self._step = step
self.val_min = val_min
self.val_max = val_max
self.ratio = ratio
self._optimizer = optimizer
self._t = 0
self._last_value = None
def initialize(self, trainer):
optimizer = self._get_optimizer(trainer)
if self.val_max is None:
self.val_max = getattr(optimizer, self._attr)
if self._last_value is not None:
value = self._last_value
else:
value = self.val_max
self._update_value(optimizer, value)
def __call__(self, trainer):
self._t += 1
optimizer = self._get_optimizer(trainer)
value = self.val_min + (self.val_max - self.val_min) * 0.5 * (1. + numpy.cos(numpy.pi * (self._t / self._step)))
self._update_value(optimizer, value)
if self._t % self._step == 0:
self._t = 0
self.val_max *= self.ratio
def serialize(self, serializer):
self._t = serializer('_t', self._t)
self._last_value = serializer('_last_value', self._last_value)
if isinstance(self._last_value, numpy.ndarray):
self._last_value = self._last_value.item()
def _get_optimizer(self, trainer):
return self._optimizer or trainer.updater.get_optimizer('main')
def _update_value(self, optimizer, value):
setattr(optimizer, self._attr, value)
self._last_value = value