-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathppo_trainer.py
360 lines (299 loc) · 11.5 KB
/
ppo_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import pickle
import os
#os.environ["CUDA_VISIBLE_DEVICES"]="-1"
import sys
import shutil
import configparser
import signal
import threading
import multiprocessing
import tensorflow as tf
import time
import gym
import gym_cap
import numpy as np
import random
import math
from collections import defaultdict
import gym_cap.heuristic as policy
from utility.utils import MovingAverage
from utility.utils import interval_flag, path_create
from utility.buffer import Trajectory
from utility.buffer import expense_batch_sampling as batch_sampler
from utility.multiprocessing import SubprocVecEnv
from utility.RL_Wrapper import TrainedNetwork
from utility.logger import record
from utility.gae import gae
from method.ppo2 import PPO as Network
device_t = '/gpu:0'
PROGBAR = True
LOG_DEVICE = False
OVERRIDE = False
## Training Directory Reset
TRAIN_NAME = sys.argv[3]
LOG_PATH = './logs/'+TRAIN_NAME
MODEL_PATH = './model/' + TRAIN_NAME
SAVE_PATH = './save/' + TRAIN_NAME
MAP_PATH = './fair_map'
GPU_CAPACITY = 0.95
NENV = 8 # multiprocessing.cpu_count() // 2
print('Number of cpu_count : {}'.format(NENV))
env_setting_path = sys.argv[2] # env_settings/setting_full.ini
## Data Path
path_create(LOG_PATH)
path_create(MODEL_PATH)
path_create(SAVE_PATH)
## Import Shared Training Hyperparameters
config_path = sys.argv[1]
config = configparser.ConfigParser()
config.read(config_path)
# Training
total_episodes = config.getint('TRAINING', 'TOTAL_EPISODES')
max_ep = config.getint('TRAINING', 'MAX_STEP')
gamma = config.getfloat('TRAINING', 'DISCOUNT_RATE')
lambd = config.getfloat('TRAINING', 'GAE_LAMBDA')
ppo_e = config.getfloat('TRAINING', 'PPO_EPSILON')
critic_beta = config.getfloat('TRAINING', 'CRITIC_BETA')
entropy_beta = config.getfloat('TRAINING', 'ENTROPY_BETA')
lr_a = config.getfloat('TRAINING', 'LR_ACTOR')
lr_c = config.getfloat('TRAINING', 'LR_CRITIC')
# Log Setting
save_network_frequency = config.getint('LOG', 'SAVE_NETWORK_FREQ')
save_stat_frequency = config.getint('LOG', 'SAVE_STATISTICS_FREQ')
save_image_frequency = config.getint('LOG', 'SAVE_STATISTICS_FREQ') * 4
moving_average_step = config.getint('LOG', 'MOVING_AVERAGE_SIZE')
# Environment/Policy Settings
action_space = config.getint('DEFAULT', 'ACTION_SPACE')
vision_range = config.getint('DEFAULT', 'VISION_RANGE')
keep_frame = config.getint('DEFAULT', 'KEEP_FRAME')
map_size = config.getint('DEFAULT', 'MAP_SIZE')
## PPO Batch Replay Settings
minibatch_size = 256
epoch = 2
minimum_batch_size = 4096
print(minimum_batch_size)
## Setup
vision_dx, vision_dy = 2*vision_range+1, 2*vision_range+1
nchannel = 6 * keep_frame
input_size = [None, vision_dx, vision_dy, nchannel]
## Logger Initialization
log_episodic_reward = MovingAverage(moving_average_step)
log_length = MovingAverage(moving_average_step)
log_winrate = MovingAverage(moving_average_step)
log_redwinrate = MovingAverage(moving_average_step)
log_looptime = MovingAverage(moving_average_step)
log_traintime = MovingAverage(moving_average_step)
log_attack_reward = MovingAverage(moving_average_step)
log_scout_reward = MovingAverage(moving_average_step)
log_defense_reward = MovingAverage(moving_average_step)
## Map Setting
map_list = [os.path.join(MAP_PATH, path) for path in os.listdir(MAP_PATH)]
max_epsilon = 0.70; max_at = total_episodes
def smoothstep(x, lowx=0.0, highx=1.0, lowy=0, highy=1):
x = (x-lowx) / (highx-lowx)
if x < 0:
val = 0
elif x > 1:
val = 1
else:
val = x * x * (3 - 2 * x)
return val*(highy-lowy)+lowy
def use_this_map(x, max_episode, max_prob):
prob = smoothstep(x, highx=max_episode, highy=max_prob)
if np.random.random() < prob:
return random.choice(map_list)
else:
return None
## Policy Setting
heur_policy_list = [policy.Patrol, policy.Roomba, policy.Defense, policy.Random, policy.AStar]
heur_weight = [1,1,1,1,1]
heur_weight = np.array(heur_weight) / sum(heur_weight)
def use_this_policy():
return np.random.choice(heur_policy_list, p=heur_weight)
## Environment Initialization
def make_env(map_size):
return lambda: gym.make(
'cap-v0',
map_size=map_size,
config_path=env_setting_path
)
envs = [make_env(map_size) for i in range(NENV)]
envs = SubprocVecEnv(envs, keep_frame)
num_blue = len(envs.get_team_blue()[0])
num_red = len(envs.get_team_red()[0])
## Launch TF session and create Graph
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=GPU_CAPACITY, allow_growth=True)
config = tf.ConfigProto(gpu_options=gpu_options, log_device_placement=LOG_DEVICE, allow_soft_placement=True)
if PROGBAR:
progbar = tf.keras.utils.Progbar(None, unit_name=TRAIN_NAME)
sess = tf.Session(config=config)
with tf.device(device_t):
global_step = tf.Variable(0, trainable=False, name='global_step')
global_step_next = tf.assign_add(global_step, NENV)
network = Network(input_shape=input_size, action_size=action_space, scope='main', sess=sess)
# Resotre / Initialize
global_episodes = 0
saver = tf.train.Saver(max_to_keep=3)
network.initiate(saver, MODEL_PATH)
if OVERRIDE:
sess.run(tf.assign(global_step, 0)) # Reset the counter
else:
global_episodes = sess.run(global_step)
writer = tf.summary.FileWriter(LOG_PATH, sess.graph)
network.save(saver, MODEL_PATH+'/ctf_policy.ckpt', global_episodes)
### TRAINING ###
def train(trajs, bootstrap=0.0, epoch=epoch, batch_size=minibatch_size, writer=None, log=False, global_episodes=None):
traj_buffer = defaultdict(list)
buffer_size = 0
for idx, traj in enumerate(trajs):
if len(traj) == 0:
continue
buffer_size += len(traj)
td_target, advantages = gae(traj[2], traj[3], 0,
gamma, lambd, normalize=False)
traj_buffer['state'].extend(traj[0])
traj_buffer['action'].extend(traj[1])
traj_buffer['td_target'].extend(td_target)
traj_buffer['advantage'].extend(advantages)
traj_buffer['logit'].extend(traj[4])
if buffer_size < 10:
return
it = batch_sampler(
batch_size,
epoch,
np.stack(traj_buffer['state']),
np.stack(traj_buffer['action']),
np.stack(traj_buffer['td_target']),
np.stack(traj_buffer['advantage']),
np.stack(traj_buffer['logit'])
)
for mdp_tuple in it:
network.update_network(*mdp_tuple, global_episodes, writer, log)
def get_action(states):
a1, v1, logits1 = network.run_network(states)
actions = np.reshape(a1, [NENV, num_blue])
return a1, v1, logits1, actions
def reward_shape(prev_red_alive, red_alive, done):
prev_red_alive = np.reshape(prev_red_alive, [NENV, num_red])
red_alive = np.reshape(red_alive, [NENV, num_red])
reward = []
red_flags = envs.red_flag_captured()
blue_flags = envs.blue_flag_captured()
for i in range(NENV):
possible_reward = []
# Attack (C/max enemy)
num_prev_enemy = sum(prev_red_alive[i])
num_enemy = sum(red_alive[i])
possible_reward.append((num_prev_enemy - num_enemy)*0.25)
# Scout
if red_flags[i]:
possible_reward.append(1)
else:
possible_reward.append(0)
# Defense
if blue_flags[i]:
possible_reward.append(-1)
elif done[i]:
possible_reward.append(1)
else:
possible_reward.append(0)
reward.append(possible_reward)
return np.array(reward)
batch = []
num_batch = 0
#while global_episodes < total_episodes:
while True:
log_on = interval_flag(global_episodes, save_stat_frequency, 'log')
log_image_on = interval_flag(global_episodes, save_image_frequency, 'im_log')
save_on = interval_flag(global_episodes, save_network_frequency, 'save')
play_save_on = interval_flag(global_episodes, 50000, 'replay_save')
# initialize parameters
episode_rew = np.zeros(NENV)
case_rew = [np.zeros(NENV) for _ in range(3)]
prev_rew = np.zeros(NENV)
was_alive = [True for agent in envs.get_team_blue().flat]
was_alive_red = [True for agent in envs.get_team_red().flat]
was_done = [False for env in range(NENV)]
trajs = [Trajectory(depth=5) for _ in range(num_blue*NENV)]
# Bootstrap
s1 = envs.reset(
config_path=env_setting_path,
custom_board=use_this_map(global_episodes, max_at, max_epsilon),
policy_red=use_this_policy()
)
a1, v1, logits1, actions = get_action(s1)
# Rollout
stime_roll = time.time()
for step in range(max_ep+1):
s0 = s1
a, v0 = a1, v1
logits = logits1
s1, raw_reward, done, info = envs.step(actions)
is_alive = [agent.isAlive for agent in envs.get_team_blue().flat]
is_alive_red = [agent.isAlive for agent in envs.get_team_red().flat]
reward = (raw_reward - prev_rew - 0.01)/100.0
if step == max_ep:
reward[:] = -1
done[:] = True
episode_rew += reward
shaped_reward = reward_shape(was_alive_red, is_alive_red, done)
for i in range(NENV):
if not was_done[i]:
for j in range(3):
case_rew[j][i] += shaped_reward[i,j]
a1, v1, logits1, actions = get_action(s1)
# push to buffer
for idx, agent in enumerate(envs.get_team_blue().flat):
env_idx = idx // num_blue
if was_alive[idx] and not was_done[env_idx]:
trajs[idx].append([s0[idx], a[idx], reward[env_idx], v0[idx], logits[idx]])
prev_rew = raw_reward
was_alive = is_alive
was_alive_red = is_alive_red
was_done = done
if np.all(done):
break
etime_roll = time.time()
batch.extend(trajs)
num_batch += sum([len(traj) for traj in trajs])
if num_batch >= minimum_batch_size:
stime_train = time.time()
train(batch, 0, epoch, minibatch_size, writer, log_image_on, global_episodes)
etime_train = time.time()
batch = []
num_batch = 0
log_traintime.append(etime_train - stime_train)
steps = []
for env_id in range(NENV):
steps.append(max([len(traj) for traj in trajs[env_id*num_blue:(env_id+1)*num_blue]]))
log_episodic_reward.extend(episode_rew.tolist())
log_length.extend(steps)
log_winrate.extend(envs.blue_win())
log_redwinrate.extend(envs.red_win())
log_looptime.append(etime_roll - stime_roll)
log_attack_reward.extend(case_rew[0].tolist())
log_scout_reward.extend(case_rew[1].tolist())
log_defense_reward.extend(case_rew[2].tolist())
global_episodes += NENV
sess.run(global_step_next)
if PROGBAR:
progbar.update(global_episodes)
if log_on:
tag = 'baseline_training/'
record({
tag+'length': log_length(),
tag+'win-rate': log_winrate(),
tag+'redwin-rate': log_redwinrate(),
tag+'env_reward': log_episodic_reward(),
tag+'rollout_time': log_looptime(),
tag+'train_time': log_traintime(),
tag+'reward_attack': log_attack_reward(),
tag+'reward_scout': log_scout_reward(),
tag+'reward_defense': log_defense_reward(),
}, writer, global_episodes)
if save_on:
network.save(saver, MODEL_PATH+'/ctf_policy.ckpt', global_episodes)
if play_save_on:
for i in range(NENV):
with open(SAVE_PATH+f'/replay{global_episodes}_{i}.pkl', 'wb') as handle:
pickle.dump(info[i], handle)