-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdawg.go
569 lines (460 loc) · 12.9 KB
/
dawg.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
package dawg
import (
"bytes"
"errors"
"fmt"
"io"
"log"
"strconv"
)
// FindResult is the result of a lookup in the d. It
// contains both the word found, and it's index based on the
// order it was added.
type FindResult struct {
Word string
Index int
}
type edgeStart struct {
node int
ch rune
}
func (edge edgeStart) String() string {
return fmt.Sprintf("(%d, '%c')", edge.node, edge.ch)
}
type edgeEnd struct {
node int
count int
}
type uncheckedNode struct {
parent int
ch rune
child int
}
// EnumFn is a method that you implement. It will be called with
// all prefixes stored in the DAWG. If final is true, the prefix
// represents a complete word that has been stored.
type EnumFn = func(index int, word []rune, final bool) EnumerationResult
// EnumerationResult is returned by the enumeration function to indicate whether
// indication should continue below this depth or to stop altogether
type EnumerationResult = int
const (
// Continue enumerating all words with this prefix
Continue EnumerationResult = iota
// Skip will skip all words with this prefix
Skip
// Stop will immediately stop enumerating words
Stop
)
// Finder is the interface for querying a dawg. Use either
// Builder.Finish() or Load() to obtain one.
type Finder interface {
// Find all prefixes of the given string
FindAllPrefixesOf(input string) []FindResult
// Find the index of the given string
IndexOf(input string) int
AtIndex(index int) (string, error)
// Enumerate all prefixes stored in the dawg.
Enumerate(fn EnumFn)
// Returns the number of words
NumAdded() int
// Returns the number of edges
NumEdges() int
// Returns the number of nodes
NumNodes() int
// Output a human-readable description of the dawg to stdout
Print()
// Close the dawg that was opened with Load(). After this, it is no longer
// accessible.
Close() error
// Save to a writer
Write(w io.Writer) (int64, error)
// Save to a file
Save(filename string) (int64, error)
}
// Builder is the interface for creating a new Dawg. Use New() to create it.
type Builder interface {
// Add the word to the dawg
Add(wordIn string)
// Returns true if the word can be added.
CanAdd(word string) bool
// Complete the dawg and return a Finder.
Finish() Finder
}
const rootNode = 0
type node struct {
final bool
count int
edges []edgeStart
}
// dawg represents a Directed Acyclic Word Graph
type dawg struct {
// these are erased after we finish building
lastWord []rune
nextID int
uncheckedNodes []uncheckedNode
minimizedNodes map[string]int
nodes map[int]*node
// if read from a file, this is set
r io.ReaderAt
size int64 // size of the readerAt
// these are kept
finished bool
numAdded int
numNodes int
numEdges int
cbits int64 // bits to represent character value
abits int64 // bits to represent node address
wbits int64 // bits to represent number of words / counts
firstNodeOffset int64 // first node offset in bits in the file
hasEmptyWord bool
}
// New creates a new dawg
func New() Builder {
return &dawg{
nextID: 1,
minimizedNodes: make(map[string]int),
nodes: map[int]*node{
0: {count: -1},
},
}
}
// CanAdd will return true if the word can be added to the d.
// Words must be added in alphabetical order.
func (d *dawg) CanAdd(word string) bool {
return !d.finished &&
(d.numAdded == 0 || word > string(d.lastWord))
}
// Add adds a word to the structure.
// Adding a word not in alphaetical order, or to a finished dawg will panic.
func (d *dawg) Add(wordIn string) {
if d.numAdded > 0 && wordIn <= string(d.lastWord) {
log.Printf("Last word=%s newword=%s", string(d.lastWord), wordIn)
panic(errors.New("d.AddWord(): Words not in alphabetical order"))
} else if d.finished {
panic(errors.New("d.AddWord(): Tried to add to a finished dawg"))
}
word := []rune(wordIn)
// find common prefix between word and previous word
commonPrefix := 0
for i := 0; i < min(len(word), len(d.lastWord)); i++ {
if word[i] != d.lastWord[i] {
break
}
commonPrefix++
}
// Check the uncheckedNodes for redundant nodes, proceeding from last
// one down to the common prefix size. Then truncate the list at that
// point.
d.minimize(commonPrefix)
// add the suffix, starting from the correct node mid-way through the
// graph
var node int
if len(d.uncheckedNodes) == 0 {
node = rootNode
} else {
node = d.uncheckedNodes[len(d.uncheckedNodes)-1].child
}
for _, letter := range word[commonPrefix:] {
nextNode := d.newNode()
d.addChild(node, letter, nextNode)
d.uncheckedNodes = append(d.uncheckedNodes, uncheckedNode{node, letter, nextNode})
node = nextNode
}
d.setFinal(node)
d.lastWord = word
d.numAdded++
}
// Finish will mark the dawg as complete. The dawg cannot be used for lookups
// until Finish has been called.
func (d *dawg) Finish() Finder {
if !d.finished {
d.finished = true
d.minimize(0)
d.numNodes = len(d.minimizedNodes) + 1
// Fill in the counts
d.calculateSkipped(rootNode)
// no longer need the names.
d.uncheckedNodes = nil
d.minimizedNodes = nil
d.lastWord = nil
d.renumber()
var buffer bytes.Buffer
d.size, _ = d.Write(&buffer)
d.r = bytes.NewReader(buffer.Bytes())
d.nodes = nil
}
finder, _ := Read(d.r, 0)
return finder
}
func (d *dawg) renumber() {
// after minimization, nodes have been removed so there are gaps in the node IDs.
// Renumber them all to be consecutive.
// process them in a depth-first order so that runs of characters
// will appear in consecutive nodes, which is more efficient for encoding.
remap := make(map[int]int)
var process func(id int)
process = func(id int) {
if _, ok := remap[id]; ok {
return
}
remap[id] = len(remap)
node := d.nodes[id]
for _, edge := range node.edges {
process(edge.node)
}
}
process(rootNode)
nodes := make(map[int]*node)
for id, node := range d.nodes {
nodes[remap[id]] = node
for i := range node.edges {
node.edges[i].node = remap[node.edges[i].node]
}
}
d.nodes = nodes
}
// Print will print all edges to the standard output
func (d *dawg) Print() {
DumpFile(d.r)
}
// FindAllPrefixesOf returns all items in the dawg that are a prefix of the input string.
// It will panic if the dawg is not finished.
func (d *dawg) FindAllPrefixesOf(input string) []FindResult {
d.checkFinished()
var results []FindResult
skipped := 0
final := d.hasEmptyWord
node := rootNode
var edgeEnd edgeEnd
var ok bool
r := newBitSeeker(d.r)
// for each character of the input
for pos, letter := range input {
// if the node is final, add a result
if final {
results = append(results, FindResult{
Word: input[:pos],
Index: skipped,
})
}
// check if there is an outgoing edge for the letter
edgeEnd, final, ok = d.getEdge(&r, edgeStart{node: node, ch: letter})
if !ok {
return results
}
// we found an edge.
node = edgeEnd.node
skipped += edgeEnd.count
}
if final {
results = append(results, FindResult{
Word: input,
Index: skipped,
})
}
return results
}
// IndexOf returns the index, which is the order the item was inserted.
// If the item was never inserted, it returns -1
// It will panic if the dawg is not finished.
func (d *dawg) IndexOf(input string) int {
skipped := 0
node := rootNode
final := d.hasEmptyWord
var ok bool
var edgeEnd edgeEnd
r := newBitSeeker(d.r)
// for each character of the input
for _, letter := range input {
// check if there is an outgoing edge for the letter
edgeEnd, final, ok = d.getEdge(&r, edgeStart{node: node, ch: letter})
//log.Printf("Follow %v:%v=>%v (ok=%v)", node, string(letter), edgeEnd.node, ok)
if !ok {
// not found
return -1
}
// we found an edge.
node = edgeEnd.node
skipped += edgeEnd.count
}
//log.Printf("IsFinal %d: %v", node, final)
if final {
return skipped
}
return -1
}
// NumAdded returns the number of words added
func (d *dawg) NumAdded() int {
return d.numAdded
}
// NumNodes returns the number of nodes in the d.
func (d *dawg) NumNodes() int {
return d.numNodes
}
// NumEdges returns the number of edges in the d. This includes transitions to
// the "final" node after each word.
func (d *dawg) NumEdges() int {
return d.numEdges
}
func (d *dawg) checkFinished() {
if !d.finished {
panic(errors.New("dawg was not Finished()"))
}
}
func (d *dawg) minimize(downTo int) {
// proceed from the leaf up to a certain point
for i := len(d.uncheckedNodes) - 1; i >= downTo; i-- {
u := d.uncheckedNodes[i]
name := d.nameOf(u.child)
if node, ok := d.minimizedNodes[name]; ok {
// replace the child with the previously encountered one
d.replaceChild(u.parent, u.ch, node)
} else {
// add the state to the minimized nodes.
d.minimizedNodes[name] = u.child
}
}
d.uncheckedNodes = d.uncheckedNodes[:downTo]
}
func (d *dawg) newNode() int {
d.nextID++
return d.nextID - 1
}
func (d *dawg) nameOf(nodeid int) string {
node := d.nodes[nodeid]
// node name is id_ch:id... for each child
buff := bytes.Buffer{}
for _, edge := range node.edges {
buff.WriteByte('_')
buff.WriteRune(edge.ch)
buff.WriteByte(':')
buff.WriteString(strconv.Itoa(edge.node))
}
if node.final {
buff.WriteByte('!')
}
return buff.String()
}
func (d *dawg) setFinal(node int) {
d.nodes[node].final = true
if node == rootNode {
d.hasEmptyWord = true
}
}
func (d *dawg) addChild(parent int, ch rune, child int) {
//log.Printf("Addchild %v(%v)->%v", parent, string(ch), child)
d.numEdges++
if d.nodes[child] == nil {
d.nodes[child] = &node{
count: -1,
}
}
node := d.nodes[parent]
if len(node.edges) > 0 && ch <= node.edges[len(node.edges)-1].ch {
log.Panic("Not strictly increasing")
}
node.edges = append(node.edges, edgeStart{child, ch})
}
func (d *dawg) replaceChild(parent int, ch rune, child int) {
pnode := d.nodes[parent]
//TODO: should be bsearch
i := bsearch(len(pnode.edges), func(i int) int {
return int(pnode.edges[i].ch - ch)
})
if pnode.edges[i].ch != ch {
//for _, edge := range pnode.edges {
// log.Printf("Edge %c %d", rune(edge.ch), edge.node)
//}
log.Panicf("Not found: %c", ch)
}
//log.Printf("ReplaceChild(%v:%v=>%v, %v:%v=>%v)",
// parent, string(ch), pnode.edges[i].node,
// parent, string(ch), child)
delete(d.nodes, pnode.edges[i].node)
pnode.edges[i].node = child
}
func (d *dawg) calculateSkipped(nodeid int) int {
// for each child of the node, calculate now many nodes
// are skipped over by following that child. This is the
// sum of all skipped-over counts of its previous siblings.
// returns the number of leaves reachable from the node.
node := d.nodes[nodeid]
if node.count >= 0 {
return node.count
}
numReachable := 0
if node.final {
numReachable++
}
for _, edge := range node.edges {
numReachable += d.calculateSkipped(edge.node)
}
node.count = numReachable
return numReachable
}
// Enumerate will call the given method, passing it every possible prefix of words in the index.
// Return Continue to continue enumeration, Skip to skip this branch, or Stop to stop enumeration.
func (d *dawg) Enumerate(fn EnumFn) {
r := newBitSeeker(d.r)
d.enumerate(&r, 0, rootNode, nil, fn)
}
func (d *dawg) enumerate(r *bitSeeker, index int, address int, runes []rune, fn EnumFn) EnumerationResult {
// get the node and whether its final
node := d.getNode(r, address)
// call the enum function on the runes
result := fn(index, runes, node.final)
// if the function didn't say to continue, then return.
if result != Continue {
return result
}
l := len(runes)
runes = append(runes, 0)
// for each edge
for _, edge := range node.edges {
// add ch to the runes
runes[l] = edge.ch
// recurse
result = d.enumerate(r, index+edge.count, edge.node, runes, fn)
if result == Stop {
break
}
}
return result
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func (d *dawg) AtIndex(index int) (string, error) {
if index < 0 || index >= d.NumAdded() {
return "", errors.New("invalid index")
}
r := newBitSeeker(d.r)
// start at first node and empty string
result, _ := d.atIndex(&r, rootNode, 0, index, nil)
return result, nil
}
func (d *dawg) atIndex(r *bitSeeker, nodeNumber, atIndex, targetIndex int, runes []rune) (string, bool) {
node := d.getNode(r, nodeNumber)
// if node is final and index matches, return it
if node.final && atIndex == targetIndex {
return string(runes), true
}
next := bsearch(len(node.edges), func(i int) int {
return atIndex + node.edges[i].count - targetIndex
})
if next == len(node.edges) || atIndex+node.edges[next].count > targetIndex {
next--
}
//log.Printf("Follow edge %v %c skip=%d", node.edges[next], node.edges[next].ch, node.edges[next].count)
runes = append(runes, 0)
for i := next; i < len(node.edges); i++ {
runes[len(runes)-1] = node.edges[i].ch
if result, ok := d.atIndex(r, node.edges[i].node, atIndex+node.edges[i].count, targetIndex, runes); ok {
return result, ok
}
}
return "", false
}