-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransformer.py
152 lines (125 loc) · 5.53 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import jax
import jax.numpy as np
from flax import linen as nn
from typing import Optional, Callable, List
from models.mlp import MLP
class MultiHeadAttentionBlock(nn.Module):
"""Multi-head attention. Uses pre-LN configuration (LN within residual stream), which seems to work much better than post-LN."""
n_heads: int
d_model: int
d_mlp: int
@nn.compact
def __call__(self, x, y, mask=None):
mask = None if mask is None else mask[..., None, :, :]
# Multi-head attention
if x is y: # Self-attention
x_sa = nn.LayerNorm()(x) # pre-LN
x_sa = nn.MultiHeadDotProductAttention(
num_heads=self.n_heads,
kernel_init=nn.initializers.xavier_uniform(),
bias_init=nn.initializers.zeros,
)(x_sa, x_sa, mask=mask)
else: # Cross-attention
x_sa, y_sa = nn.LayerNorm()(x), nn.LayerNorm()(y)
x_sa = nn.MultiHeadDotProductAttention(
num_heads=self.n_heads,
kernel_init=nn.initializers.xavier_uniform(),
bias_init=nn.initializers.zeros,
)(x_sa, y_sa, mask=mask)
# Add into residual stream
x += x_sa
# MLP
x_mlp = nn.LayerNorm()(x) # pre-LN
x_mlp = nn.gelu(nn.Dense(self.d_mlp)(x_mlp))
x_mlp = nn.Dense(self.d_model)(x_mlp)
# Add into residual stream
x += x_mlp
return x
class PoolingByMultiHeadAttention(nn.Module):
"""PMA block from the Set Transformer paper."""
n_seed_vectors: int
n_heads: int
d_model: int
d_mlp: int
@nn.compact
def __call__(self, z, mask=None):
seed_vectors = self.param(
"seed_vectors",
nn.linear.default_embed_init,
(self.n_seed_vectors, z.shape[-1]),
)
seed_vectors = np.broadcast_to(seed_vectors, z.shape[:-2] + seed_vectors.shape)
mask = None if mask is None else mask[..., None, :]
return MultiHeadAttentionBlock(
n_heads=self.n_heads, d_model=self.d_model, d_mlp=self.d_mlp
)(seed_vectors, z, mask)
class Transformer(nn.Module):
"""Simple decoder-only transformer for set modeling.
Attributes:
d_model: The dimension of the model embedding space.
d_mlp: The dimension of the multi-layer perceptron (MLP) used in the feed-forward network.
n_layers: Number of transformer layers.
n_heads: The number of attention heads.
induced_attention: Whether to use induced attention.
n_inducing_points: The number of inducing points for induced attention.
n_outputs: The number of outputs for graph-level readout.
readout_agg: Aggregation function for readout, "sum", "mean", or "max".
mlp_readout_widths: Widths of the MLPs used in the readout.
task: The task to perform, either 'graph' or 'node'.
"""
d_model: int = 128
d_mlp: int = 1024
n_layers: int = 6
n_heads: int = 4
induced_attention: bool = False
n_inducing_points: int = 32
n_outputs: int = 2
readout_agg: str = "mean"
mlp_readout_widths: List[int] = (4, 2, 2) # Factor of d_hidden for global readout MLPs
task: str = "graph" # "graph" or "node"
@nn.compact
def __call__(self, x: np.ndarray, mask=None):
# Input embedding
x = nn.Dense(int(self.d_model))(x) # (batch, seq_len, d_model)
# Transformer layers
for _ in range(self.n_layers):
if not self.induced_attention: # Vanilla self-attention
mask_attn = (
None if mask is None else mask[..., None] * mask[..., None, :]
)
x = MultiHeadAttentionBlock(
n_heads=self.n_heads,
d_model=self.d_model,
d_mlp=self.d_mlp,
)(x, x, mask_attn,)
else: # Induced attention from Set Transformer paper
h = PoolingByMultiHeadAttention(
self.n_inducing_points,
self.n_heads,
d_model=self.d_model,
d_mlp=self.d_mlp,
)(x, mask)
mask_attn = None if mask is None else mask[..., None]
x = MultiHeadAttentionBlock(
n_heads=self.n_heads, d_model=self.d_model, d_mlp=self.d_mlp
)(x, h, mask_attn)
# Final LN as in pre-LN configuration
x = nn.LayerNorm()(x)
if self.task == "node": # Node-level prediction
x = MLP([int(self.d_mlp * w) for w in self.mlp_readout_widths] + [self.n_outputs], activation=nn.gelu)(x)
elif self.task == "graph": # Graph-level prediction
if self.readout_agg not in ["sum", "mean", "max", "attn"]:
raise ValueError(
f"Invalid message passing aggregation function {self.message_passing_agg}"
)
if self.readout_agg == "attn":
q_agg = self.param("q_qgg", nn.initializers.xavier_uniform(), (1, self.d_model))
# Repeat q_qgg along batch dim
q_agg = np.repeat(q_agg, x.shape[0], axis=0)[:, None, :]
x = nn.MultiHeadDotProductAttention(num_heads=self.n_heads,)(q_agg, x, mask=mask)[:, 0, :]
else:
aggregate_fn = getattr(np, self.readout_agg)
x = aggregate_fn(x, axis=-2) # Aggregate along seq dim; (batch, d_model)
# Graph-level MLP
x = MLP([int(self.d_mlp * w) for w in self.mlp_readout_widths] + [self.n_outputs], activation=nn.gelu)(x)
return x