-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathnumerical_evaluation.py
54 lines (44 loc) · 1.71 KB
/
numerical_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import argparse
import json
import torch
from audioldm_eval import EvaluationHelper
# from audioldm_eval import EvaluationHelper_CLAP
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def parse_args():
parser = argparse.ArgumentParser(description="Inference for text to audio generation task.")
parser.add_argument(
"--reference_dir", type=str, default="/data/audiocaps/test/audio",
help="Folder containing the test reference wav files."
)
parser.add_argument(
"--generated_dir", type=str, default="/path/to/generated_dir",
help="Folder containing the generated wav files."
)
args = parser.parse_args()
return args
def main():
args = parse_args()
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU is available. Using GPU...")
else:
device = torch.device("cpu")
print("GPU is not available. Using CPU...")
evaluator = EvaluationHelper(32000, device)
# clap_evaluator = EvaluationHelper_CLAP(32000, device)
result = evaluator.main(args.generated_dir, args.reference_dir)
# result_clap = clap_evaluator.main(args.generated_dir, args.reference_dir)
with open(f"{args.generated_dir}/summary.jsonl", "a") as f:
f.write(json.dumps(result) + "\n\n")
# with open(f"{args.generated_dir}/summary_clap.jsonl", "a") as f:
# f.write(json.dumps(result_clap) + "\n\n")
if __name__ == "__main__":
main()