-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathteacher_eval.py
162 lines (143 loc) · 5.33 KB
/
teacher_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import csv
import os
import time
import soundfile as sf
import torch
from accelerate.utils import set_seed
from tqdm import tqdm
from tango_edm.models_edm import AudioDiffusionEDM, build_pretrained_models
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def parse_args():
parser = argparse.ArgumentParser(description="Inference for text to audio generation task.")
# parser.add_argument(
# "--original_args", type=str, default=None,
# help="Path for summary jsonl file saved during training."
# )
parser.add_argument(
"--output_dir", type=str, default=None,
help="Where to store the output."
)
parser.add_argument(
"--seed", type=int, default=5031,
help="A seed for reproducible training."
)
parser.add_argument(
"--text_encoder_name", type=str, default="google/flan-t5-large",
help="Text encoder identifier from huggingface.co/models.",
)
parser.add_argument(
"--unet_model_config", type=str, default=None,
help="UNet model config json path.",
)
parser.add_argument(
"--model", type=str, default=None,
help="Path for saved model bin file."
)
parser.add_argument(
"--test_file", type=str, default="data/test_audiocaps_subset.json",
help="json file containing the test prompts for generation."
)
parser.add_argument(
"--test_references", type=str, default="data/audiocaps_test_references/subset",
help="Folder containing the test reference wav files."
)
parser.add_argument(
"--num_steps", type=int, default=200,
help="How many denoising steps for generation.",
)
parser.add_argument(
"--guidance", type=float, default=3,
help="Guidance scale for classifier free guidance."
)
parser.add_argument(
"--batch_size", type=int, default=8,
help="Batch size for generation.",
)
parser.add_argument(
"--num_samples", type=int, default=1,
help="How many samples per prompt.",
)
parser.add_argument(
"--sigma_data", type=float, default=0.25,
help="Sigma data",
)
parser.add_argument(
"--stocastic", type=bool, default=False,
help="Enable stocastic sampling of EDM Heun sampler",
)
parser.add_argument(
"--prefix", type=str, default=None,
help="Add prefix in text prompts.",
)
args = parser.parse_args()
return args
def main():
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU is available. Using GPU...")
else:
device = torch.device("cpu")
print("GPU is not available. Using CPU...")
args = parse_args()
if args.seed is not None:
set_seed(args.seed)
name = "audioldm-s-full"
vae, stft = build_pretrained_models(name)
vae, stft = vae.to(device), stft.to(device)
model = AudioDiffusionEDM(
text_encoder_name=args.text_encoder_name,
unet_model_config_path=args.unet_model_config,
sigma_data=args.sigma_data,
teacher=True,
).to(device)
model.eval()
# Load Trained Weight #
model.load_state_dict(torch.load(args.model))
# Load Data #
if args.prefix:
prefix = args.prefix
else:
prefix = ""
# text_prompts = [json.loads(line)[args.text_key] for line in open(args.test_file).readlines()]
with open(args.test_file, mode='r', encoding='utf-8') as file:
reader = csv.DictReader(file)
text_prompts = [row['caption'] for row in reader]
text_prompts = [prefix + inp for inp in text_prompts]
with open(args.test_file, mode='r', encoding='utf-8') as file:
reader = csv.DictReader(file)
file_names = [row['file_name'] for row in reader]
# Generate #
num_steps, guidance, batch_size, num_samples = args.num_steps, args.guidance, args.batch_size, args.num_samples
all_outputs = []
for k in tqdm(range(0, len(text_prompts), batch_size)):
text = text_prompts[k: k+batch_size]
with torch.no_grad():
latents = model.inference(text, num_steps, guidance, num_samples, args.stocastic)
mel = vae.decode_first_stage(latents)
with torch.no_grad():
wave = vae.decode_to_waveform(mel)
wave = (wave.cpu().numpy() * 32768).astype("int16")
wave = wave[:, :160000]
all_outputs += [item for item in wave]
# Save #
exp_id = str(int(time.time()))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if num_samples == 1:
output_dir = "outputs/{}_steps_{}_guidance_{}_seed_{}".format(exp_id, num_steps, guidance, args.seed)
output_dir = os.path.join(args.output_dir, output_dir)
os.makedirs(output_dir, exist_ok=True)
for j, wav in enumerate(all_outputs):
filename = os.path.splitext(os.path.basename(file_names[j]))[0]
sf.write("{}/{}.wav".format(output_dir, filename), wav, samplerate=16000)
if __name__ == "__main__":
main()