-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathio.go
1059 lines (987 loc) · 31 KB
/
io.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright © 2013 the InMAP authors.
This file is part of InMAP.
InMAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
InMAP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with InMAP. If not, see <http://www.gnu.org/licenses/>.
*/
package inmap
import (
"fmt"
"log"
"math"
"os"
"path/filepath"
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"github.com/Knetic/govaluate"
"github.com/ctessum/geom"
"github.com/ctessum/geom/encoding/shp"
"github.com/ctessum/geom/index/rtree"
"github.com/ctessum/geom/proj"
"github.com/ctessum/unit"
goshp "github.com/jonas-p/go-shp"
"github.com/spatialmodel/inmap/emissions/aep"
"gonum.org/v1/gonum/floats"
)
// AddEmissionsFlux adds emissions to c.Cf and sets c.Ci equal to c.Cf.
// It should be run once for each timestep,
// and it should not be run in parallel with other CellManipulators.
func AddEmissionsFlux() CellManipulator {
return func(c *Cell, Dt float64) {
if c.EmisFlux != nil {
for i := range c.EmisFlux {
c.Cf[i] += c.EmisFlux[i] * Dt
c.Ci[i] = c.Cf[i]
}
}
}
}
// Emissions is a holder for input emissions data.
type Emissions struct {
data *rtree.Rtree
dataSlice []*EmisRecord
// Mask specifies the region that emissions should be clipped
// to. It is assumed to use the same spatial reference as the
// InMAP computational grid. It is ignored if nil.
Mask geom.Polygon
}
// EmisRecord is a holder for an emissions record.
type EmisRecord struct {
geom.Geom
VOC, NOx, NH3, SOx float64 // emissions [μg/s]
PM25 float64 `shp:"PM2_5"` // emissions [μg/s]
Height float64 // stack height [m]
Diam float64 // stack diameter [m]
Temp float64 // stack temperature [K]
Velocity float64 // stack velocity [m/s]
}
// add adds the emissions in o to the receiver.
func (e *EmisRecord) add(o *EmisRecord) {
e.VOC += o.VOC
e.NOx += o.NOx
e.NH3 += o.NH3
e.SOx += o.SOx
e.PM25 += o.PM25
}
// NewEmissions Initializes a new emissions holder.
func NewEmissions() *Emissions {
return &Emissions{
data: rtree.NewTree(25, 50),
}
}
// Add adds an emissions record to the receiver, clipping
// it to the Mask if necessary.
func (e *Emissions) Add(er *EmisRecord) {
if e.Mask == nil {
e.data.Insert(er)
e.dataSlice = append(e.dataSlice, er)
return
}
if !er.Bounds().Overlaps(e.Mask.Bounds()) {
return
}
var g geom.Geom // g is the intersection of the emission geometry and the mask.
var frac float64 // Frac is the fraction of the geometry overlapping the mask.
switch t := er.Geom.(type) {
case geom.Polygonal:
p := t.Intersection(e.Mask)
frac = p.Area() / t.Area()
g = p
case geom.Linear:
l := t.Clip(e.Mask)
g = l
frac = l.Length() / t.Length()
case geom.Point:
if w := t.Within(e.Mask); w == geom.Inside || w == geom.OnEdge {
g = t
frac = 1
}
default:
panic(fmt.Errorf("invalid geometry %T", t))
}
if g != nil {
er2 := er
er2.Geom = g
er2.VOC *= frac
er2.NOx *= frac
er2.NH3 *= frac
er2.SOx *= frac
er2.PM25 *= frac
e.data.Insert(er2)
e.dataSlice = append(e.dataSlice, er2)
}
}
// EmisRecords returns all EmisRecords stored in the
// receiver.
func (e *Emissions) EmisRecords() []*EmisRecord { return e.dataSlice }
// emisConversionFactor returns the conversion factor to μg/s
// for the given units.
func emisConversionFactor(units string) (float64, error) {
var emisConv float64
switch units {
case "tons/year":
// Input units = tons/year; output units = μg/s
const massConv = 907184740000. // μg per short ton
const timeConv = 3600. * 8760. // seconds per year
emisConv = massConv / timeConv // convert tons/year to μg/s
case "kg/year":
// Input units = kg/year; output units = μg/s
const massConv = 1.e9 // μg per kg
const timeConv = 3600. * 8760. // seconds per year
emisConv = massConv / timeConv // convert kg/year to μg/s
case "ug/s", "μg/s":
// Input units = μg/s; output units = μg/s
emisConv = 1
default:
return math.NaN(), fmt.Errorf("inmap: invalid emissions units '%s'", units)
}
return emisConv, nil
}
// ReadEmissionShapefiles returns the emissions data in the specified shapefiles,
// and converts them to the spatial reference gridSR. Input units are specified
// by units; options are tons/year, kg/year, ug/s, and μg/s. Output units = μg/s.
// c is a channel over which status updates will be sent. If c is nil,
// no updates will be sent.
// mask specifies the region that emissions should be clipped to, assumed to
// use the same spatial reference as the InMAP grid. If mask is nil
// it will be ignored.
func ReadEmissionShapefiles(gridSR *proj.SR, units string, c chan string, mask geom.Polygon, shapefiles ...string) (*Emissions, error) {
emisConv, err := emisConversionFactor(units)
if err != nil {
return nil, err
}
// Add in emissions shapefiles
// Load emissions into rtree for fast searching
emis := NewEmissions()
emis.Mask = mask
for _, fname := range shapefiles {
if c != nil {
c <- fmt.Sprintf("Loading emissions shapefile: %s.", fname)
}
fname = strings.Replace(fname, ".shp", "", -1)
f, err := shp.NewDecoder(fname + ".shp")
if err != nil {
return nil, fmt.Errorf("there was a problem reading the emissions shapefile '%s' "+
"The error message was %v", fname, err)
}
sr, err := f.SR()
if err != nil {
return nil, fmt.Errorf("there was a problem reading the projection information for "+
"the emissions shapefile '%s'. The error message was %v", fname, err)
}
trans, err := sr.NewTransform(gridSR)
if err != nil {
return nil, fmt.Errorf("there was a problem creating a spatial reprojector for "+
"the emissions shapefile '%s'. The error message was %v", fname, err)
}
for {
var e EmisRecord
if ok := f.DecodeRow(&e); !ok {
break
}
if e.Geom == nil {
continue
}
e.Geom, err = e.Transform(trans)
if err != nil {
return nil, fmt.Errorf("there was a problem spatially reprojecting in "+
"emissions file %s. The error message was %v", fname, err)
}
e.VOC *= emisConv
e.NOx *= emisConv
e.NH3 *= emisConv
e.SOx *= emisConv
e.PM25 *= emisConv
if math.IsNaN(e.Height) {
e.Height = 0.
}
if math.IsNaN(e.Diam) {
e.Diam = 0.
}
if math.IsNaN(e.Temp) {
e.Temp = 0.
}
if math.IsNaN(e.Velocity) {
e.Velocity = 0.
}
emis.Add(&e)
}
f.Close()
if err := f.Error(); err != nil {
return nil, fmt.Errorf("problem reading emissions shapefile."+
"\nfile: %s\nerror: %v", fname, err)
}
}
return emis, nil
}
// FromAEP converts the given AEP (github.com/spatialmodel/inmap/emissions/aep) records to
// EmisRecords using the given grid definitions and
// grid index gi. VOC, NOx, NH3, SOx, and PM25 are lists of
// AEP Polluants that should be mapped to those InMAP species.
// The returned EmisRecords will be grouped as much as possible to minimize
// the number of records.
func FromAEP(r []aep.RecordGridded, grids []*aep.GridDef, gi int, VOC, NOx, NH3, SOx, PM25 []aep.Pollutant) ([]*EmisRecord, error) {
if gi < 0 || len(grids) <= gi {
return nil, fmt.Errorf("inmap: converting AEP record to EmisRecord: invalid gi (%d)", gi)
}
checkDim := func(v *unit.Unit) float64 {
if v == nil {
return 0
}
if !v.Dimensions().Matches(unit.Kilogram) {
panic(fmt.Errorf("bad dimensions: %v", v.Dimensions()))
}
return v.Value()
}
grid := grids[gi]
var eRecs []*EmisRecord
groundERecs := make(map[int]*EmisRecord)
for _, rec := range r {
gridSrg, _, inGrid, err := rec.GridFactors(gi)
if err != nil {
return nil, err
}
if !inGrid {
continue
}
e := rec.GetEmissions().Totals()
for i, frac := range gridSrg.Elements {
er := EmisRecord{
Geom: grid.Cells[i].Polygonal,
}
// Convert units.
const (
secPerYear = 60 * 60 * 24 * 365
ugPerKg = 1.0e9
kgPerYearToUgPerS = 1 * ugPerKg / secPerYear
)
// Add the emissions to the new record.
for pRec, v := range e {
var found bool
for _, p := range VOC {
if pRec.Name == p.Name {
er.VOC += checkDim(v) * frac * kgPerYearToUgPerS
found = true
break
}
}
if found {
continue
}
for _, p := range NOx {
if pRec.Name == p.Name {
er.NOx += checkDim(e[pRec]) * frac * kgPerYearToUgPerS
found = true
break
}
}
if found {
continue
}
for _, p := range NH3 {
if pRec.Name == p.Name {
er.NH3 += checkDim(e[pRec]) * frac * kgPerYearToUgPerS
found = true
break
}
}
if found {
continue
}
for _, p := range SOx {
if pRec.Name == p.Name {
er.SOx += checkDim(e[pRec]) * frac * kgPerYearToUgPerS
found = true
break
}
}
if found {
continue
}
for _, p := range PM25 {
if pRec.Name == p.Name {
er.PM25 += checkDim(e[pRec]) * frac * kgPerYearToUgPerS
found = true
break
}
}
}
if ptRec, ok := rec.Parent().(aep.RecordElevated); ok && !ptRec.GroundLevel() {
StackHeight, StackDiameter, StackTemp, _, StackVelocity := ptRec.StackParameters()
er.Height = StackHeight.Value()
er.Diam = StackDiameter.Value()
er.Temp = StackTemp.Value()
er.Velocity = StackVelocity.Value()
eRecs = append(eRecs, &er)
} else {
// For ground level sources, combine with other records
// at the same point.
if _, ok := groundERecs[i]; !ok {
groundERecs[i] = &er
} else {
groundERecs[i].add(&er)
}
}
}
}
for _, groundERec := range groundERecs {
eRecs = append(eRecs, groundERec)
}
return eRecs, nil
}
// calcWeightFactor calculates the fraction of emissions in e that should be
// allocated to the intersection between e and c based on the areas of lengths or areas.
func calcWeightFactor(e geom.Geom, c *Cell) float64 {
var weightFactor float64
switch e.(type) {
case geom.Point:
p := e.(geom.Point)
in := p.Within(c)
if in == geom.Inside {
weightFactor = 1.
} else if in == geom.OnEdge {
onCorner := false
for _, cp := range c.Polygons()[0][0] {
if cp.Equals(p) {
// If the point is located exactly on one of the corners of the
// grid cell, we split the emissions evenly between this grid cell
// and the three that it shares a corner with.
onCorner = true
weightFactor = 0.25
break
}
}
if !onCorner {
// If the point is on the edge of the cell but not on the corner,
// split the emissions between this cell and the cell that it shares
// an edge with.
weightFactor = 0.5
}
}
case geom.Polygonal:
poly := e.(geom.Polygonal)
intersection := poly.Intersection(c.Polygonal)
if intersection == nil {
return 0.
}
weightFactor = intersection.Area() / poly.Area()
case geom.Linear:
intersection := e.(geom.Linear).Clip(c.Polygonal)
if intersection == nil {
return 0.
}
el := e.(geom.Linear)
il := intersection
weightFactor = il.Length() / el.Length()
default:
log.Fatalf("unsupported geometry type: %#v in emissions file", e)
}
return weightFactor
}
// SetEmissionsFlux sets the emissions flux for the receiver based on the emissions in e.
func (c *Cell) SetEmissionsFlux(e *Emissions, m Mechanism) error {
c.EmisFlux = make([]float64, m.Len())
for _, eTemp := range e.data.SearchIntersect(c.Bounds()) {
e := eTemp.(*EmisRecord)
if e.Height > 0. {
// Figure out if this cell is at the right hight for the plume.
in, _, err := c.IsPlumeIn(e.Height, e.Diam, e.Temp, e.Velocity)
if err != nil {
panic(err)
}
if !in {
continue
}
} else if c.Layer != 0 {
continue
}
weightFactor := calcWeightFactor(e.Geom, c)
if weightFactor == 0 {
continue
}
if err := m.AddEmisFlux(c, "VOC", e.VOC*weightFactor); err != nil {
return err
}
if err := m.AddEmisFlux(c, "NOx", e.NOx*weightFactor); err != nil {
return err
}
if err := m.AddEmisFlux(c, "NH3", e.NH3*weightFactor); err != nil {
return err
}
if err := m.AddEmisFlux(c, "SOx", e.SOx*weightFactor); err != nil {
return err
}
if err := m.AddEmisFlux(c, "PM2_5", e.PM25*weightFactor); err != nil {
return err
}
}
return nil
}
// Outputter is a holder for output parameters.
//
// fileName contains the path where the output will be saved.
//
// If allLayers is true, output will contain data for all of the vertical
// layers, otherwise only the ground-level layer is returned.
//
// outputVariables maps the names of the variables for which data
// should be returned to expressions that define how the
// requested data should be calculated. These expressions can utilize variables
// built into the model, user-defined variables, and functions.
//
// modelVariables is automatically generated based on the model variables that
// are required to calculate the requested output variables.
//
// Functions are defined in the outputFunctions variable.
type Outputter struct {
fileName string
allLayers bool
outputVariables map[string]string
modelVariables []string
outputFunctions map[string]govaluate.ExpressionFunction
m Mechanism
}
// NewOutputter initializes a new Outputter holder and adds a set of default
// output functions. Default functions include:
//
// 'exp(x)' which applies the exponential function e^x.
//
// 'log(x)' which applies the natural logarithm function log(x).
//
// 'log10(x)' which applies the base-10 logarithm function log10(x).
//
// 'sum(x)' which sums a variable across all grid cells.
func NewOutputter(fileName string, allLayers bool, outputVariables map[string]string, outputFunctions map[string]govaluate.ExpressionFunction, m Mechanism) (*Outputter, error) {
defaultOutputFuncs := map[string]govaluate.ExpressionFunction{
"exp": func(arg ...interface{}) (interface{}, error) {
if len(arg) != 1 {
return nil, fmt.Errorf("inmap: got %d arguments for function 'exp', but need 1", len(arg))
}
return (float64)(math.Exp(arg[0].(float64))), nil
},
"log": func(arg ...interface{}) (interface{}, error) {
if len(arg) != 1 {
return nil, fmt.Errorf("inmap: got %d arguments for function 'log', but need 1", len(arg))
}
return (float64)(math.Log(arg[0].(float64))), nil
},
"log10": func(arg ...interface{}) (interface{}, error) {
if len(arg) != 1 {
return nil, fmt.Errorf("inmap: got %d arguments for function 'log10', but need 1", len(arg))
}
return (float64)(math.Log10(arg[0].(float64))), nil
},
"sum": func(arg ...interface{}) (interface{}, error) {
if len(arg) != 1 {
return nil, fmt.Errorf("inmap: got %d arguments for function 'sum', but need 1", len(arg))
}
return floats.Sum(arg[0].([]float64)), nil
},
}
for key, val := range outputFunctions {
defaultOutputFuncs[key] = val
}
o := Outputter{
fileName: fileName,
allLayers: allLayers,
outputVariables: outputVariables,
outputFunctions: defaultOutputFuncs,
m: m,
}
for _, val := range o.outputVariables {
regx := regexp.MustCompile(`{(.*?)}`)
matches := regx.FindAllString(val, -1)
if len(matches) > 0 {
for _, m := range matches {
if strings.Count(m, "{") > 1 || strings.Count(m, "}") > 1 {
fmt.Println("inmap o.outputVariables: unsupported use of braces {}")
}
o.outputVariables[m] = m[1 : len(m)-1]
}
}
}
err := o.checkForDerivatives()
for k1, v1 := range o.outputVariables {
if strings.Contains(k1, "{") {
for k2, v2 := range o.outputVariables {
if k1 != k2 {
o.outputVariables[k2] = strings.Replace(v2, v1, "{"+v1+"}", -1)
}
}
delete(o.outputVariables, k1)
}
}
return &o, err
}
// removeDuplicates removes all duplicated strings from a slice, returning a
// slice that contains only unique strings.
func removeDuplicates(s []string) []string {
result := make([]string, 0, len(s))
seen := make(map[string]string)
for _, val := range s {
if _, ok := seen[val]; !ok {
result = append(result, val)
seen[val] = val
}
}
return result
}
func checkPrefix(s string) (bool, error) {
var isPrefix bool
var err error
if string(s) != "" {
isPrefix, err = regexp.MatchString("[a-zA-Z0-9_]", string(s[0]))
if err != nil {
return false, err
}
} else {
isPrefix = false
}
return isPrefix, nil
}
func checkSuffix(s string) (bool, error) {
var isSuffix bool
var err error
if string(s) != "" {
isSuffix, err = regexp.MatchString("[a-zA-Z0-9_]", string(s[len(s)-1]))
if err != nil {
return false, err
}
} else {
isSuffix = false
}
return isSuffix, nil
}
// checkForDerivatives identifies the unique input variables that are required
// to calculate the requested output variables.
// Inputs:
// (1) Map of requested output variable names to their corresponding expressions.
// (2) Map of all function names to function definitions that are used in expressions.
// Outputs:
// (1) Map of output variable names to revised expressions where any user-defined
// output variable showing up in a subsequent expression is replaced by its
// corresponding user-defined expression.
// (2) Slice of all unique input variables required to calculate the requested
// output variables.
func (o *Outputter) checkForDerivatives() error {
o.modelVariables = make([]string, 0, len(o.outputVariables))
for key, val := range o.outputVariables {
o.outputVariables[key] = strings.Replace(val, "{", "", -1)
o.outputVariables[key] = strings.Replace(o.outputVariables[key], "}", "", -1)
expression, err := govaluate.NewEvaluableExpressionWithFunctions(o.outputVariables[key], o.outputFunctions)
if err != nil {
return fmt.Errorf("inmap o.outputVariables: %v", err)
}
uniqueVars := removeDuplicates(expression.Vars())
o.modelVariables = append(o.modelVariables, uniqueVars...)
// For each variable name identified in an output variable expression,
// check if the variable is defined in terms of other variables within a
// separate expression. If so, any instance of the variable name in the
// current will be replaced by the expression that defines it.
var isSuffix bool
var isPrefix bool
for _, uniqueVar := range uniqueVars {
if o.outputVariables[uniqueVar] != "" && o.outputVariables[uniqueVar] != uniqueVar {
// In order to verify that an instance of a variable name is not part of
// a longer variable name, the text preceding and following the variable
// name is analyzed. For example, 'White' is not a standalone variable
// in an expression if it appears as 'PctWhite'.
splitVal := strings.Split(val, uniqueVar)
for i := 0; i < len(splitVal)-1; i++ {
isSuffix, err = checkSuffix(splitVal[i])
if err != nil {
return fmt.Errorf("inmap o.outputVariables: %v", err)
}
isPrefix, err = checkPrefix(splitVal[i+1])
if err != nil {
return fmt.Errorf("inmap o.outputVariables: %v", err)
}
splitVal[i] = splitVal[i] + uniqueVar
// For every instance of the variable name that is not part of a
// longer variable name, replace it by the expression that defines it.
if !isSuffix && !isPrefix {
splitVal[i] = strings.Replace(splitVal[i], uniqueVar, "("+o.outputVariables[uniqueVar]+")", -1)
}
}
o.outputVariables[key] = strings.Join(splitVal, "")
return o.checkForDerivatives()
}
}
}
o.modelVariables = removeDuplicates(o.modelVariables)
return nil
}
// CheckModelVars checks whether the unique input variables required to calculate
// the user-requested output variables are available in the model.
func (d *InMAP) checkModelVars(m Mechanism, g ...string) error {
outputOps, _, _ := d.OutputOptions(m)
mapOutputOps := make(map[string]struct{})
for _, n := range outputOps {
mapOutputOps[n] = struct{}{}
}
for _, v := range g {
if _, ok := mapOutputOps[v]; !ok {
return fmt.Errorf("inmap: undefined variable name '%s'", v)
}
}
return nil
}
// checkOutputNames checks (1) if any output variable names exceed 10 characters
// and (2) if any output variable names include characters that are unsupported
// in shapefile field names.
func checkOutputNames(o map[string]string) error {
for key := range o {
long := len(key) > 10
noCharError, err := regexp.MatchString("^[A-Za-z]\\w*$", key)
if err != nil {
panic(err)
}
if long && !noCharError {
return fmt.Errorf("inmap: output variable name '%s' exceeds 10 characters and includes unsupported character(s)", key)
} else if long {
return fmt.Errorf("inmap: output variable name '%s' exceeds 10 characters", key)
} else if !noCharError {
return fmt.Errorf("inmap: output variable name '%s' includes unsupported characters", key)
}
}
return nil
}
// CheckOutputVars ensures that the requested output variables are all valid.
func (o *Outputter) CheckOutputVars(m Mechanism) DomainManipulator {
return func(d *InMAP) error {
if err := d.checkModelVars(m, o.modelVariables...); err != nil {
return err
} else if err := checkOutputNames(o.outputVariables); err != nil {
return err
} else {
return nil
}
}
}
// Output writes the simulation results to a shapefile.
// SR is the spatial reference of the model grid.
func (o *Outputter) Output(sr *proj.SR) DomainManipulator {
return func(d *InMAP) error {
// Projection definition. This may need to be changed for a different
// spatial domain.
// TODO: Make this settable by the user, or at least check to make sure it
// matches the InMAPProj configuration variable.
var wkt string
switch sr.Name {
case "lcc":
wkt = fmt.Sprintf("PROJCS[\"Lambert_Conformal_Conic\",GEOGCS[\"GCS_unnamed ellipse\","+
"DATUM[\"D_unknown\",SPHEROID[\"Unknown\",%f,0]],PRIMEM[\"Greenwich\",0],"+
"UNIT[\"Degree\",0.017453292519943295]],PROJECTION[\"Lambert_Conformal_Conic\"],"+
"PARAMETER[\"standard_parallel_1\",%g],PARAMETER[\"standard_parallel_2\",%g],"+
"PARAMETER[\"latitude_of_origin\",%g],PARAMETER[\"central_meridian\",%g],"+
"PARAMETER[\"false_easting\",0],PARAMETER[\"false_northing\",0],UNIT[\"Meter\",1]]",
sr.A, sr.Lat1/math.Pi*180, sr.Lat2/math.Pi*180, sr.Lat0/math.Pi*180,
sr.Long0/math.Pi*180)
case "longlat":
wkt = `GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]`
default:
return fmt.Errorf("only `lcc` and `longlat` projections are supported, not %s", sr.Name)
}
// Create slice of output variable names
outputVariableNames := make([]string, len(o.outputVariables))
i := 0
for k := range o.outputVariables {
outputVariableNames[i] = k
i++
}
results, err := d.Results(o)
if err != nil {
return err
}
vars := make([]string, 0, len(results))
for v := range results {
vars = append(vars, v)
}
sort.Strings(vars)
fields := make([]goshp.Field, len(vars))
for i, v := range vars {
fields[i] = shpFieldFromArray(v, results[v])
}
// remove extension and replace it with .shp
fileBase := strings.TrimSuffix(o.fileName, filepath.Ext(o.fileName))
o.fileName = fileBase + ".shp"
shape, err := shp.NewEncoderFromFields(o.fileName, goshp.POLYGON, fields...)
if err != nil {
return fmt.Errorf("error creating output shapefile: %v", err)
}
cells := d.cells.array()
for i, c := range cells[0:len(results[outputVariableNames[0]])] {
outFields := make([]interface{}, len(vars))
for j, v := range vars {
outFields[j] = results[v][i]
}
err = shape.EncodeFields(c.Polygonal, outFields...)
if err != nil {
return fmt.Errorf("error writing output shapefile: %v", err)
}
}
shape.Close()
// Create .prj file
f, err := os.Create(fileBase + ".prj")
if err != nil {
return fmt.Errorf("error creating output prj file: %v", err)
}
fmt.Fprint(f, wkt)
f.Close()
return nil
}
}
// shpFieldFromArray creates a shapefile field from the given array,
// ensuring that all values in the array will have a minimum of 9 significant
// digits.
func shpFieldFromArray(name string, d []float64) goshp.Field {
const minPrecision = 9
minExp := math.Inf(+1)
maxExp := math.Inf(-1)
minVal := math.Inf(1)
for _, v := range d {
if v == 0 {
continue
}
exp := math.Log10(math.Abs(v))
if exp < minExp {
minExp = exp
}
if exp > maxExp {
maxExp = exp
}
if v < minVal {
minVal = v
}
}
var precision, size uint8
if math.IsInf(minExp, 0) {
precision = minPrecision - 1 // All zeros, so 8 decimal places.
} else {
precision = uint8(math.Max(0, -1*(math.Floor(minExp)-minPrecision+1)))
}
if math.IsInf(maxExp, 0) || maxExp < 1 {
size = precision + 1 // Size = 'x' + precision
} else {
size = uint8(math.Floor(maxExp)) + 1 + precision // Size = 'xxx' + precision
}
if precision > 0 {
size++ // Add a space for a '.'
}
if minVal < 0 { // Add space for a '-'
size++
}
return goshp.FloatField(name, size, precision)
}
// Results returns the simulation results.
// Output is in the form of map[variable][row]concentration.
func (d *InMAP) Results(o *Outputter) (map[string][]float64, error) {
// Prepare output data.
modelVals := make(map[string]interface{})
valByRow := make(map[string]interface{})
output := make(map[string][]float64)
var nCells int
// Get the model variables that are to be used in the output.
for _, name := range o.modelVariables {
if o.allLayers {
data := d.toArray(name, -1, o.m)
modelVals[name] = data
nCells = len(data)
} else {
data := d.toArray(name, 0, o.m)
modelVals[name] = data
nCells = len(data)
}
}
// Identify segments of output variable expressions that are surrounded by braces.
for k, v := range o.outputVariables {
regx, _ := regexp.Compile("\\{(.*?)\\}")
matches := regx.FindAllString(v, -1)
if len(matches) > 0 {
// For each segment of an expression that is surrounded by braces, evaluate
// across all grid cells.
for _, m := range matches {
expression, err := govaluate.NewEvaluableExpressionWithFunctions(m[1:len(m)-1], o.outputFunctions)
if err != nil {
return nil, err
}
result, err := expression.Evaluate(modelVals)
if err != nil {
return nil, err
}
// Replace segments surrounded by braces with corresponding result
// calculated above.
o.outputVariables[k] = strings.Replace(o.outputVariables[k], m, strconv.FormatFloat(result.(float64), 'f', -1, 64), 1)
}
}
}
for k, v := range o.outputVariables {
expression, err := govaluate.NewEvaluableExpressionWithFunctions(v, o.outputFunctions)
if err != nil {
return nil, err
}
for i := 0; i < nCells; i++ {
for name := range modelVals {
valByRow[name] = modelVals[name].([]float64)[i]
}
result, err := expression.Evaluate(valByRow)
if err != nil {
return nil, err
}
output[k] = append(output[k], result.(float64))
}
}
return output, nil
}
// toArray converts cell data for variable varName into a regular array.
// If layer is less than zero, data for all layers is returned.
func (d *InMAP) toArray(varName string, layer int, m Mechanism) []float64 {
o := make([]float64, 0, d.cells.len())
cells := d.cells.array()
for _, c := range cells {
c.mutex.RLock()
if layer >= 0 && c.Layer > layer {
// The cells should be sorted with the lower layers first, so we
// should be done here.
c.mutex.RUnlock()
return o
}
if layer < 0 || c.Layer == layer {
o = append(o, c.getValue(varName, d.PopIndices, d.mortIndices, m))
}
c.mutex.RUnlock()
}
return o
}
// Get the value in the current cell of the specified variable, where popIndices
// are array indices of each population type.
func (c *Cell) getValue(varName string, popIndices, mortIndices map[string]int, m Mechanism) float64 {
v, err := m.Value(c, varName)
if err == nil {
return v
}
if i, ok := popIndices[varName]; ok { // Population
return c.PopData[i]
} else if polConv, ok := baselinePolLabels[varName]; ok { // Baseline concentrations
var o float64
for i, ii := range polConv.index {
o += c.CBaseline[ii] * polConv.conversion[i]
}
return o
} else if i, ok := mortIndices[varName]; ok { // Mortality rate
return c.MortData[i]
} // Everything else
v2 := reflect.ValueOf(c).Elem()
if _, ok := v2.Type().FieldByName(varName); !ok {
panic(fmt.Errorf("inmap: missing variable %v", varName))
}
val := v2.FieldByName(varName)
switch val.Type().Kind() {
case reflect.Float64:
return val.Float()
case reflect.Int:
return float64(val.Int()) // convert integer fields to floats here for consistency.
default:
panic(fmt.Errorf("unsupported field type %v", val.Type().Kind()))
}
}
// getUnits returns the units of a model variable.
func (d *InMAP) getUnits(varName string, m Mechanism) string {
u, err := m.Units(varName)
if err == nil {
return u
}
if _, ok := baselinePolLabels[varName]; ok { // Concentrations
return "μg/m³"
} else if _, ok := d.PopIndices[varName]; ok { // Population
return "people/grid cell"
} else if _, ok := d.mortIndices[varName]; ok { // Mortality Rate
return "deaths/100,000"
} else if _, ok := d.PopIndices[strings.Replace(varName, " deaths", "", 1)]; ok {
// Mortalities
return "deaths/grid cell"
}
// Everything else
t := reflect.TypeOf(*(*d.cells)[0].Cell)
ftype, ok := t.FieldByName(varName)
if ok {
return ftype.Tag.Get("units")
}
panic(fmt.Sprintf("Unknown variable %v.", varName))
}
// OutputOptions returns the options for output variable names and their
// descriptions.
func (d *InMAP) OutputOptions(m Mechanism) (names []string, descriptions []string, units []string) {
// Model pollutant concentrations
for _, pol := range m.Species() {
names = append(names, pol)
}
for _, n := range names {
if strings.Contains(n, "Emissions") {
descriptions = append(descriptions, n)
} else {