-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathwrfchem.go
550 lines (479 loc) · 19.3 KB
/
wrfchem.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/*
Copyright © 2013 the InMAP authors.
This file is part of InMAP.
InMAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
InMAP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with InMAP. If not, see <http://www.gnu.org/licenses/>.
*/
package inmap
import (
"fmt"
"math"
"time"
"github.com/ctessum/atmos/seinfeld"
"github.com/ctessum/atmos/wesely1989"
"github.com/ctessum/sparse"
)
// WRF variables currently used:
/* hc5,hc8,olt,oli,tol,xyl,csl,cvasoa1,cvasoa2,cvasoa3,cvasoa4,iso,api,sesq,lim,
cvbsoa1,cvbsoa2,cvbsoa3,cvbsoa4,asoa1i,asoa1j,asoa2i,asoa2j,asoa3i,asoa3j,asoa4i,
asoa4j,bsoa1i,bsoa1j,bsoa2i,bsoa2j,bsoa3i,bsoa3j,bsoa4i,bsoa4j,no,no2,no3ai,no3aj,
so2,sulf,so4ai,so4aj,nh3,nh4ai,nh4aj,PM2_5_DRY,U,V,W,PBLH,PH,PHB,HFX,UST,PBLH,T,
PB,P,ho,h2o2,LU_INDEX,QRAIN,CLDFRA,QCLOUD,ALT,SWDOWN,GLW */
const wrfFormat = "2006-01-02_15_04_05"
// WRFChem is an InMAP preprocessor for WRF-Chem output.
type WRFChem struct {
aVOC, bVOC, aSOA, bSOA, nox, no, no2, pNO, sox, pS, nh3, pNH, totalPM25 map[string]float64
start, end time.Time
wrfOut string
recordDelta, fileDelta time.Duration
msgChan chan string
}
// NewWRFChem initializes a WRF-Chem preprocessor from the given
// configuration information.
// WRFOut is the location of WRF-Chem output files.
// [DATE] should be used as a wild card for the simulation date.
// startDate and endDate are the dates of the beginning and end of the
// simulation, respectively, in the format "YYYYMMDD".
// If msgChan is not nil, status messages will be sent to it.
func NewWRFChem(WRFOut, startDate, endDate string, msgChan chan string) (*WRFChem, error) {
w := WRFChem{
// These maps contain the WRF-Chem variables that make
// up the chemical species groups, as well as the
// multiplication factors required to convert concentrations
// to mass fractions [μg/kg dry air].
// RACM VOC species and molecular weights (g/mol);
// Only includes anthropogenic precursors to SOA from
// anthropogenic (aSOA) and biogenic (bSOA) sources as
// in Ahmadov et al. (2012)
// Assume condensable vapor from SOA has molar mass of 70
aVOC: map[string]float64{
"hc5": ppmvToUgKg(72), "hc8": ppmvToUgKg(114),
"olt": ppmvToUgKg(42), "oli": ppmvToUgKg(68), "tol": ppmvToUgKg(92),
"xyl": ppmvToUgKg(106), "csl": ppmvToUgKg(108),
"cvasoa1": ppmvToUgKg(70), "cvasoa2": ppmvToUgKg(70),
"cvasoa3": ppmvToUgKg(70), "cvasoa4": ppmvToUgKg(70),
},
bVOC: map[string]float64{
"iso": ppmvToUgKg(68), "api": ppmvToUgKg(136), "sesq": ppmvToUgKg(84.2),
"lim": ppmvToUgKg(136), "cvbsoa1": ppmvToUgKg(70), "cvbsoa2": ppmvToUgKg(70),
"cvbsoa3": ppmvToUgKg(70), "cvbsoa4": ppmvToUgKg(70),
},
// VBS SOA species (anthropogenic only) [μg/kg dry air].
aSOA: map[string]float64{"asoa1i": 1, "asoa1j": 1, "asoa2i": 1,
"asoa2j": 1, "asoa3i": 1, "asoa3j": 1, "asoa4i": 1, "asoa4j": 1},
// VBS SOA species (biogenic only) [μg/kg dry air].
bSOA: map[string]float64{"bsoa1i": 1, "bsoa1j": 1, "bsoa2i": 1,
"bsoa2j": 1, "bsoa3i": 1, "bsoa3j": 1, "bsoa4i": 1, "bsoa4j": 1},
// NOx is RACM NOx species. We are only interested in the mass
// of Nitrogen, rather than the mass of the whole molecule, so
// we use the molecular weight of Nitrogen.
nox: map[string]float64{"no": ppmvToUgKg(mwN), "no2": ppmvToUgKg(mwN)},
// pNO is the Nitrogen fraction of MADE particulate
// NO species [μg/kg dry air].
pNO: map[string]float64{"no3ai": mwN / mwNO3, "no3aj": mwN / mwNO3},
// SOx is the RACM SOx species. We are only interested in the mass
// of Sulfur, rather than the mass of the whole molecule, so
// we use the molecular weight of Sulfur.
sox: map[string]float64{"so2": ppmvToUgKg(mwS), "sulf": ppmvToUgKg(mwS)},
// pS is the Sulfur fraction of the MADE particulate
// Sulfur species [μg/kg dry air].
pS: map[string]float64{"so4ai": mwS / mwSO4, "so4aj": mwS / mwSO4},
// NH3 is ammonia. We are only interested in the mass
// of Nitrogen, rather than the mass of the whole molecule, so
// we use the molecular weight of Nitrogen.
nh3: map[string]float64{"nh3": ppmvToUgKg(mwN)},
// pNH is the Nitrogen fraction of the MADE particulate
// ammonia species [μg/kg dry air].
pNH: map[string]float64{"nh4ai": mwN / mwNH4, "nh4aj": mwN / mwNH4},
// totalPM25 is total mass of PM2.5 [μg/m3].
totalPM25: map[string]float64{"PM2_5_DRY": 1.},
wrfOut: WRFOut,
msgChan: msgChan,
}
var err error
w.start, err = time.Parse(inDateFormat, startDate)
if err != nil {
return nil, fmt.Errorf("inmap: WRF-Chem preprocessor start time: %v", err)
}
w.end, err = time.Parse(inDateFormat, endDate)
if err != nil {
return nil, fmt.Errorf("inmap: WRF-Chem preprocessor end time: %v", err)
}
if !w.end.After(w.start) {
if err != nil {
return nil, fmt.Errorf("inmap: WRF-Chem preprocessor end time %v is not after start time %v", w.end, w.start)
}
}
w.recordDelta, err = time.ParseDuration("1h")
if err != nil {
return nil, fmt.Errorf("inmap: WRF-Chem preprocessor recordDelta: %v", err)
}
w.fileDelta, err = time.ParseDuration("24h")
if err != nil {
return nil, fmt.Errorf("inmap: WRF-Chem preprocessor fileDelta: %v", err)
}
return &w, nil
}
// ppmvToUgKg returns a multiplier to convert a concentration in
// ppmv dry air to a mass fraction [micrograms per kilogram dry air]
// for a chemical species with the given molecular weight in g/mol.
func ppmvToUgKg(mw float64) float64 {
return mw * 1000.0 / MWa
}
func (w *WRFChem) read(varName string) NextData {
return nextDataNCF(w.wrfOut, wrfFormat, varName, w.start, w.end, w.recordDelta, w.fileDelta, readNCF, w.msgChan)
}
func (w *WRFChem) readGroupAlt(varGroup map[string]float64) NextData {
return nextDataGroupAltNCF(w.wrfOut, wrfFormat, varGroup, w.ALT(), w.start, w.end, w.recordDelta, w.fileDelta, readNCF, w.msgChan)
}
func (w *WRFChem) readGroup(varGroup map[string]float64) NextData {
return nextDataGroupNCF(w.wrfOut, wrfFormat, varGroup, w.start, w.end, w.recordDelta, w.fileDelta, readNCF, w.msgChan)
}
// Nx helps fulfill the Preprocessor interface by returning
// the number of grid cells in the West-East direction.
func (w *WRFChem) Nx() (int, error) {
f, ff, err := ncfFromTemplate(w.wrfOut, wrfFormat, w.start)
if err != nil {
return -1, fmt.Errorf("nx: %v", err)
}
defer f.Close()
return ff.Header.Lengths("ALT")[3], nil
}
// Ny helps fulfill the Preprocessor interface by returning
// the number of grid cells in the South-North direction.
func (w *WRFChem) Ny() (int, error) {
f, ff, err := ncfFromTemplate(w.wrfOut, wrfFormat, w.start)
if err != nil {
return -1, fmt.Errorf("ny: %v", err)
}
defer f.Close()
return ff.Header.Lengths("ALT")[2], nil
}
// Nz helps fulfill the Preprocessor interface by returning
// the number of grid cells in the below-above direction.
func (w *WRFChem) Nz() (int, error) {
f, ff, err := ncfFromTemplate(w.wrfOut, wrfFormat, w.start)
if err != nil {
return -1, fmt.Errorf("nz: %v", err)
}
defer f.Close()
return ff.Header.Lengths("ALT")[1], nil
}
// PBLH helps fulfill the Preprocessor interface by returning
// planetary boundary layer height [m].
func (w *WRFChem) PBLH() NextData { return w.read("PBLH") }
// Height helps fulfill the Preprocessor interface by returning
// layer heights above ground level calculated based on geopotential height.
// For more information, refer to
// http://www.openwfm.org/wiki/How_to_interpret_WRF_variables.
func (w *WRFChem) Height() NextData {
// ph is perturbation geopotential height [m2/s].
phFunc := w.read("PH")
// phb is baseline geopotential height [m2/s].
phbFunc := w.read("PHB")
return func() (*sparse.DenseArray, error) {
ph, err := phFunc()
if err != nil {
return nil, err
}
phb, err := phbFunc()
if err != nil {
return nil, err
}
return geopotentialToHeight(ph, phb), nil
}
}
func geopotentialToHeight(ph, phb *sparse.DenseArray) *sparse.DenseArray {
layerHeights := sparse.ZerosDense(ph.Shape...)
for k := 0; k < ph.Shape[0]; k++ {
for j := 0; j < ph.Shape[1]; j++ {
for i := 0; i < ph.Shape[2]; i++ {
h := (ph.Get(k, j, i) + phb.Get(k, j, i) -
ph.Get(0, j, i) - phb.Get(0, j, i)) / g // m
layerHeights.Set(h, k, j, i)
}
}
}
return layerHeights
}
// ALT helps fulfill the Preprocessor interface by returning
// inverse air density [m3/kg].
func (w *WRFChem) ALT() NextData { return w.read("ALT") }
// U helps fulfill the Preprocessor interface by returning
// West-East wind speed [m/s].
func (w *WRFChem) U() NextData { return w.read("U") }
// V helps fulfill the Preprocessor interface by returning
// South-North wind speed [m/s].
func (w *WRFChem) V() NextData { return w.read("V") }
// W helps fulfill the Preprocessor interface by returning
// below-above wind speed [m/s].
func (w *WRFChem) W() NextData { return w.read("W") }
// AVOC helps fulfill the Preprocessor interface.
func (w *WRFChem) AVOC() NextData { return w.readGroupAlt(w.aVOC) }
// BVOC helps fulfill the Preprocessor interface.
func (w *WRFChem) BVOC() NextData { return w.readGroupAlt(w.bVOC) }
// NOx helps fulfill the Preprocessor interface.
func (w *WRFChem) NOx() NextData { return w.readGroupAlt(w.nox) }
// SOx helps fulfill the Preprocessor interface.
func (w *WRFChem) SOx() NextData { return w.readGroupAlt(w.sox) }
// NH3 helps fulfill the Preprocessor interface.
func (w *WRFChem) NH3() NextData { return w.readGroupAlt(w.nh3) }
// ASOA helps fulfill the Preprocessor interface.
func (w *WRFChem) ASOA() NextData { return w.readGroupAlt(w.aSOA) }
// BSOA helps fulfill the Preprocessor interface.
func (w *WRFChem) BSOA() NextData { return w.readGroupAlt(w.bSOA) }
// PNO helps fulfill the Preprocessor interface.
func (w *WRFChem) PNO() NextData { return w.readGroupAlt(w.pNO) }
// PS helps fulfill the Preprocessor interface.
func (w *WRFChem) PS() NextData { return w.readGroupAlt(w.pS) }
// PNH helps fulfill the Preprocessor interface.
func (w *WRFChem) PNH() NextData { return w.readGroupAlt(w.pNH) }
// TotalPM25 helps fulfill the Preprocessor interface.
func (w *WRFChem) TotalPM25() NextData { return w.readGroup(w.totalPM25) }
// SurfaceHeatFlux helps fulfill the Preprocessor interface
// by returning heat flux at the surface [W/m2].
func (w *WRFChem) SurfaceHeatFlux() NextData { return w.read("HFX") }
// UStar helps fulfill the Preprocessor interface
// by returning friction velocity [m/s].
func (w *WRFChem) UStar() NextData { return w.read("UST") }
// T helps fulfill the Preprocessor interface by
// returning temperature [K].
func (w *WRFChem) T() NextData {
thetaFunc := w.read("T") // perturbation potential temperature [K]
pFunc := w.P() // Pressure [Pa]
return wrfTemperatureConvert(thetaFunc, pFunc)
}
func wrfTemperatureConvert(thetaFunc, pFunc NextData) NextData {
return func() (*sparse.DenseArray, error) {
thetaPerturb, err := thetaFunc() // perturbation potential temperature [K]
if err != nil {
return nil, err
}
p, err := pFunc() // Pressure [Pa]
if err != nil {
return nil, err
}
T := sparse.ZerosDense(thetaPerturb.Shape...)
for i, tp := range thetaPerturb.Elements {
T.Elements[i] = thetaPerturbToTemperature(tp, p.Elements[i])
}
return T, nil
}
}
// thetaPerturbToTemperature converts perburbation potential temperature
// to ambient temperature for the given pressure (p [Pa]).
func thetaPerturbToTemperature(thetaPerturb, p float64) float64 {
const (
po = 101300. // Pa, reference pressure
kappa = 0.2854 // related to von karman's constant
)
pressureCorrection := math.Pow(p/po, kappa)
// potential temperature, K
θ := thetaPerturb + 300.
// Ambient temperature, K
return θ * pressureCorrection
}
// P helps fulfill the Preprocessor interface
// by returning pressure [Pa].
func (w *WRFChem) P() NextData {
pbFunc := w.read("PB") // baseline pressure [Pa]
pFunc := w.read("P") // perturbation pressure [Pa]
return wrfPressureConvert(pFunc, pbFunc)
}
func wrfPressureConvert(pFunc, pbFunc NextData) NextData {
return func() (*sparse.DenseArray, error) {
pb, err := pbFunc() // baseline pressure [Pa]
if err != nil {
return nil, err
}
p, err := pFunc() // perturbation pressure [Pa]
if err != nil {
return nil, err
}
P := pb.Copy()
P.AddDense(p)
return P, nil
}
}
// HO helps fulfill the Preprocessor interface
// by returning hydroxyl radical concentration [ppmv].
func (w *WRFChem) HO() NextData { return w.read("ho") }
// H2O2 helps fulfill the Preprocessor interface
// by returning hydrogen peroxide concentration [ppmv].
func (w *WRFChem) H2O2() NextData { return w.read("h2o2") }
// SeinfeldLandUse helps fulfill the Preprocessor interface
// by returning land use categories as
// specified in github.com/ctessum/atmos/seinfeld.
func (w *WRFChem) SeinfeldLandUse() NextData {
luFunc := w.read("LU_INDEX") // USGS land use index
return wrfSeinfeldLandUse(luFunc)
}
func wrfSeinfeldLandUse(luFunc NextData) NextData {
return func() (*sparse.DenseArray, error) {
lu, err := luFunc() // USGS land use index
if err != nil {
return nil, err
}
o := sparse.ZerosDense(lu.Shape...)
for j := 0; j < lu.Shape[0]; j++ {
for i := 0; i < lu.Shape[1]; i++ {
o.Set(float64(USGSseinfeld[f2i(lu.Get(j, i))]), j, i)
}
}
return o, nil
}
}
// USGSseinfeld lookup table to go from USGS land classes to land classes for
// particle dry deposition.
var USGSseinfeld = []seinfeld.LandUseCategory{
seinfeld.Desert, //'Urban and Built-Up Land'
seinfeld.Grass, //'Dryland Cropland and Pasture'
seinfeld.Grass, //'Irrigated Cropland and Pasture'
seinfeld.Grass, //'Mixed Dryland/Irrigated Cropland and Pasture'
seinfeld.Grass, //'Cropland/Grassland Mosaic'
seinfeld.Grass, //'Cropland/Woodland Mosaic'
seinfeld.Grass, //'Grassland'
seinfeld.Shrubs, //'Shrubland'
seinfeld.Shrubs, //'Mixed Shrubland/Grassland'
seinfeld.Grass, //'Savanna'
seinfeld.Deciduous, //'Deciduous Broadleaf Forest'
seinfeld.Evergreen, //'Deciduous Needleleaf Forest'
seinfeld.Deciduous, //'Evergreen Broadleaf Forest'
seinfeld.Evergreen, //'Evergreen Needleleaf Forest'
seinfeld.Deciduous, //'Mixed Forest'
seinfeld.Desert, //'Water Bodies'
seinfeld.Grass, //'Herbaceous Wetland'
seinfeld.Deciduous, //'Wooded Wetland'
seinfeld.Desert, //'Barren or Sparsely Vegetated'
seinfeld.Shrubs, //'Herbaceous Tundra'
seinfeld.Deciduous, //'Wooded Tundra'
seinfeld.Shrubs, //'Mixed Tundra'
seinfeld.Desert, //'Bare Ground Tundra'
seinfeld.Desert, //'Snow or Ice'
seinfeld.Desert, //'Playa'
seinfeld.Desert, //'Lava'
seinfeld.Desert, //'White Sand'
}
// WeselyLandUse helps fulfill the Preprocessor interface
// by returning land use categories as
// specified in github.com/ctessum/atmos/wesely1989.
func (w *WRFChem) WeselyLandUse() NextData {
luFunc := w.read("LU_INDEX") // USGS land use index
return wrfWeselyLandUse(luFunc)
}
func wrfWeselyLandUse(luFunc NextData) NextData {
return func() (*sparse.DenseArray, error) {
lu, err := luFunc() // USGS land use index
if err != nil {
return nil, err
}
o := sparse.ZerosDense(lu.Shape...)
for j := 0; j < lu.Shape[0]; j++ {
for i := 0; i < lu.Shape[1]; i++ {
o.Set(float64(USGSwesely[f2i(lu.Get(j, i))]), j, i)
}
}
return o, nil
}
}
// USGSwesely lookup table to go from USGS land classes to land classes for
// gas dry deposition.
var USGSwesely = []wesely1989.LandUseCategory{
wesely1989.Urban, //'Urban and Built-Up Land'
wesely1989.RangeAg, //'Dryland Cropland and Pasture'
wesely1989.RangeAg, //'Irrigated Cropland and Pasture'
wesely1989.RangeAg, //'Mixed Dryland/Irrigated Cropland and Pasture'
wesely1989.RangeAg, //'Cropland/Grassland Mosaic'
wesely1989.Agricultural, //'Cropland/Woodland Mosaic'
wesely1989.Range, //'Grassland'
wesely1989.RockyShrubs, //'Shrubland'
wesely1989.RangeAg, //'Mixed Shrubland/Grassland'
wesely1989.Range, //'Savanna'
wesely1989.Deciduous, //'Deciduous Broadleaf Forest'
wesely1989.Coniferous, //'Deciduous Needleleaf Forest'
wesely1989.Deciduous, //'Evergreen Broadleaf Forest'
wesely1989.Coniferous, //'Evergreen Needleleaf Forest'
wesely1989.MixedForest, //'Mixed Forest'
wesely1989.Water, //'Water Bodies'
wesely1989.Wetland, //'Herbaceous Wetland'
wesely1989.Wetland, //'Wooded Wetland'
wesely1989.Barren, //'Barren or Sparsely Vegetated'
wesely1989.RockyShrubs, //'Herbaceous Tundra'
wesely1989.MixedForest, //'Wooded Tundra'
wesely1989.RockyShrubs, //'Mixed Tundra'
wesely1989.Barren, //'Bare Ground Tundra'
wesely1989.Barren, //'Snow or Ice'
wesely1989.Barren, //'Playa'
wesely1989.Barren, //'Lava'
wesely1989.Barren, //'White Sand'
}
// Z0 helps fulfill the Preprocessor interface by
// returning roughness length.
func (w *WRFChem) Z0() NextData {
LUIndexFunc := w.read("LU_INDEX") //USGS land use index
return wrfZ0(LUIndexFunc)
}
func wrfZ0(LUIndexFunc NextData) NextData {
return func() (*sparse.DenseArray, error) {
luIndex, err := LUIndexFunc()
if err != nil {
return nil, err
}
zo := sparse.ZerosDense(luIndex.Shape...)
for i, lu := range luIndex.Elements {
zo.Elements[i] = USGSz0[f2i(lu)] // roughness length [m]
}
return zo, nil
}
}
// USGSz0 holds Roughness lengths for USGS land classes ([m]), from WRF file
// VEGPARM.TBL.
var USGSz0 = []float64{.50, .1, .06, .1, 0.095, .20, .11,
.03, .035, .15, .50, .50, .50, .50, .35, 0.0001, .20, .40,
.01, .10, .30, .15, .075, 0.001, .01, .15, .01}
// QRain helps fulfill the Preprocessor interface by
// returning rain mass fraction.
func (w *WRFChem) QRain() NextData { return w.read("QRAIN") }
// CloudFrac helps fulfill the Preprocessor interface
// by returning the fraction of each grid cell filled
// with clouds [volume/volume].
func (w *WRFChem) CloudFrac() NextData { return w.read("CLDFRA") }
// QCloud helps fulfill the Preprocessor interface by returning
// the mass fraction of cloud water in each grid cell [mass/mass].
func (w *WRFChem) QCloud() NextData { return w.read("QCLOUD") }
// RadiationDown helps fulfill the Preprocessor interface by returning
// total downwelling radiation at ground level [W/m2].
func (w *WRFChem) RadiationDown() NextData {
swDownFunc := w.read("SWDOWN") // downwelling short wave radiation at ground level [W/m2]
glwFunc := w.read("GLW") // downwelling long wave radiation at ground level [W/m2]
return wrfRadiationDown(swDownFunc, glwFunc)
}
func wrfRadiationDown(swDownFunc, glwFunc NextData) NextData {
return func() (*sparse.DenseArray, error) {
swDown, err := swDownFunc() // downwelling short wave radiation at ground level [W/m2]
if err != nil {
return nil, err
}
glw, err := glwFunc() // downwelling long wave radiation at ground level [W/m2]
if err != nil {
return nil, err
}
rad := swDown.Copy()
rad.AddDense(glw)
return rad, nil
}
}
// SWDown helps fulfill the Preprocessor interface by returning
// downwelling short wave radiation at ground level [W/m2].
func (w *WRFChem) SWDown() NextData { return w.read("SWDOWN") }
// GLW helps fulfill the Preprocessor interface by returning
// downwelling long wave radiation at ground level [W/m2].
func (w *WRFChem) GLW() NextData { return w.read("GLW") }