-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstarmap_2d_create_beam.m
181 lines (172 loc) · 8.63 KB
/
starmap_2d_create_beam.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
function starmap_2d_create_beam
%STARMAP_2D_CREATE_BEAM
% Creates the file STARMAP_2D_EX_BEAM_AUTO.M, which is an
% example case for STARMAP_SOLVER, a second order staggered
% grid finite difference solver for linear hyperbolic moment
% approximations to radiative transfer in 1D-3D geometry.
%
% An initial beam in angle and a spatial distribution can be
% specified. The routine generates an initial condition and
% writes default functions for all other problem parameters
% that can later be changed in the generated example file.
% This routine is specific to the PN equations.
%
% Note: By default, the domain contains a void. In that
% case, the moment approximation cannot be used to solve for
% a steady state solution.
%
% Version 2.0
% Copyright (c) 06/28/2022 Benjamin Seibold, Martin Frank, and
% Rujeko Chinomona
% http://www.math.temple.edu/~seibold
% https://www.scc.kit.edu/personen/martin.frank.php
% https://rujekoc.github.io/
%
% Contributers: Edgar Olbrant (v1.0), Kerstin Kuepper (v1.5,v2.0).
%
% StaRMAP project website:
% https://github.com/starmap-project
% For license, see files LICENSE.txt or starmap_solver.m, as published on
% https://github.com/starmap-project/starmap
%========================================================================
% Problem Parameters
%========================================================================
prob = struct(...
'name','Beam Test',... % name of example
'n_mom',9,... % order of moment approximation
'ax',[-1 1 -1 1]*0.6,... % coordinates of computational domain
'n',[1 1]*150,... % numbers of grid cells in each coordinate direction
'bc',[1 1],... % type of boundary cond. (0 = periodic, 1 = extrapolation)
't_plot',linspace(0,0.6,61)... % output times
);
% The beam is a Dirac in angle, times a Gaussian in space.
phi_beam = pi/6; % Angle of beam w.r.t. x-axis.
space_beam = @(x,y) 1/(4*pi*3.2e-4)*... % Spatial distribution
exp(-(x.^2+y.^2)/(4*3.2e-4)); % of beam.
%========================================================================
% Compute Initial Condition
%========================================================================
n_mom = prob.n_mom;
n_sys = (n_mom+1)*(n_mom+2)/2;
mu_beam = 0;
% Assemble transformation matrix
M = sparse(zeros(n_sys)); s = size(M);
for m = 2:n_mom+1
i = 1:floor(m/2); r = m*(m-1)/2+2*i;
M(sub2ind(s,r-1,m*(m-1)/2+i)) = 1;
M(sub2ind(s,r,m*(m-1)/2+i)) = -1i;
M(sub2ind(s,r-1,m*(m+1)/2+1-i)) = (-1)^(m+1);
M(sub2ind(s,r,m*(m+1)/2+1-i)) = (-1)^(m+1)*1i;
end
M = M/sqrt(2);
m = 1:2:n_mom+1;
M(sub2ind(s,m.*(m+1)/2,(m.^2+1)/2)) = 1;
% Assemble untransformed moment vector
u = zeros(n_sys,1);
for l = 0:n_mom
u(l*(l+1)/2+1:(l+1)*(l+2)/2) = sph_cc(mu_beam,phi_beam+pi,l,-l:2:l)';
end
% Transform to StarMAP variables
StarMAPmoments = M*u;
%========================================================================
% Write Example File
%========================================================================
function_name = 'starmap_2d_ex_beam_auto';
fprintf('Writing example file %s.',[function_name,'.m']);
fid = fopen([function_name,'.m'],'w');
fprintf(fid,'function %s\n',function_name);
fprintf(fid,'%s%s\n','%',upper(function_name));
fprintf(fid,'%s\n','% Example case for STARMAP_SOLVER, a second order staggered');
fprintf(fid,'%s\n','% grid finite difference solver for linear hyperbolic moment');
fprintf(fid,'%s\n','% approximations to radiative transfer in 2D slab geometry.');
fprintf(fid,'%s\n','%');
fprintf(fid,'%s%s%s\n','% Created by the file ',mfilename,'.m');
fprintf(fid,'%s\n','%');
fprintf(fid,'%s\n','% Version 2.0');
fprintf(fid,'%s\n','% Copyright (c) 06/28/2022 Benjamin Seibold, Martin Frank, and');
fprintf(fid,'%s\n','% Rujeko Chinomona');
fprintf(fid,'%s\n','% http://www.math.temple.edu/~seibold');
fprintf(fid,'%s\n','% https://www.scc.kit.edu/personen/martin.frank.php');
fprintf(fid,'%s\n','% https://rujekoc.github.io/');
fprintf(fid,'%s\n','% ');
fprintf(fid,'%s\n','% Contributers: Edgar Olbrant (v1.0), Kerstin Kuepper (v1.5,v2.0).');
fprintf(fid,'%s\n','% ');
fprintf(fid,'%s\n','% StaRMAP project website:');
fprintf(fid,'%s\n','% https://github.com/starmap-project');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','% For license, see files LICENSE.txt or starmap_solver.m, as published on');
fprintf(fid,'%s\n','% https://github.com/starmap-project/starmap');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','%========================================================================');
fprintf(fid,'%s\n','% Problem Parameters');
fprintf(fid,'%s\n','%========================================================================');
fprintf(fid,'%s\n','prob = struct(...');
fprintf(fid,'%s\n','''name'',''Beam Test'',... % name of example');
fprintf(fid,'%s\n','''closure'',''P'',... % type of closure (can be ''P'' or ''SP'')');
fprintf(fid,'%s\n',['''n_mom'',',num2str(prob.n_mom),',... % order of moment approximation']);
fprintf(fid,'%s\n','''sigma_a'',@sigma_a,... % absorption coefficient (defined below)');
fprintf(fid,'%s\n','''sigma_s0'',@sigma_s0,... % isotropic scattering coefficient (def. below)');
fprintf(fid,'%s\n','''sigma_sm'',@sigma_sm,... % aniso. scattering coefficient (defined below)');
fprintf(fid,'%s\n','''source'',@source,... % source term (defined below)');
fprintf(fid,'%s\n','''ic'',@initial,... % initial condition');
fprintf(fid,'%s\n',['''ax'',[',num2str(prob.ax,'%g '),'],... % coordinates of computational domain']);
fprintf(fid,'%s\n',['''n'',[',num2str(prob.n,'%g '),'],... % numbers of grid cells in each coordinate direction']);
fprintf(fid,'%s\n',['''bc'',[',num2str(prob.bc,'%g '), '],... % type of boundary cond. (0 = periodic, 1 = extrapolation)']);
fprintf(fid,'%s\n',['''t_plot'',[',num2str(prob.t_plot,'%g '),'],... % output times']);
fprintf(fid,'%s\n','''output'',@output... % output routine (defined below)');
fprintf(fid,'%s\n',');');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','%========================================================================');
fprintf(fid,'%s\n','% Moment System Setup and Solver Execution');
fprintf(fid,'%s\n','%========================================================================');
fprintf(fid,'%s\n','par = starmap_init(prob); % Configure data structures for starmap solver');
fprintf(fid,'%s\n','starmap_solver(par) % run solver');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','%========================================================================');
fprintf(fid,'%s\n','% Problem Specific Functions');
fprintf(fid,'%s\n','%========================================================================');
fprintf(fid,'%s\n','function f = sigma_a(x,y)');
fprintf(fid,'%s\n','% Absorption coefficient.');
fprintf(fid,'%s\n','f = 0;');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','function f = sigma_s0(x,y)');
fprintf(fid,'%s\n','% Total scattering coefficient.');
fprintf(fid,'%s\n','f = (x>.3)*100;');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','function f = sigma_sm(x,y,m)');
fprintf(fid,'%s\n','% Moments of scattering kernel.');
fprintf(fid,'%s\n','g = 0.85;');
fprintf(fid,'%s\n','f = (x>.3)*100*g^m;');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','function f = initial(x,y,k)');
fprintf(fid,'%s\n','% Initial conditions (for (k-1)-st moment).');
fprintf(fid,'%s\n','f = 0;');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','function f = source(x,y,t,k)');
fprintf(fid,'%s\n','% Source (for (k-1)-st moment).');
fprintf(fid,'%s\n',['f = feval(',func2str(space_beam),',x,y);']);
fprintf(fid,'%s\n','StarMAPmoments = [');
fprintf(fid,'%12.8f\n',StarMAPmoments);
fprintf(fid,'%s\n','];');
fprintf(fid,'%s\n','f = f*StarMAPmoments(k);');
fprintf(fid,'%s\n','');
fprintf(fid,'%s\n','function output(par,x,y,U,step)');
fprintf(fid,'%s\n','% Plotting routine.');
fprintf(fid,'%s\n','t = par.t_plot(step);');
fprintf(fid,'%s\n','clf, imagesc(x,y,U'') % 2D plot of approximation');
fprintf(fid,'%s\n','hold on, plot([1 1]*.3,y([1 end]),''k:''), hold off');
fprintf(fid,'%s\n','axis xy equal tight, title(sprintf(''%s with %s%d at t = %0.2f'',...');
fprintf(fid,'%s\n',' par.name,par.closure,par.n_mom,t))');
fprintf(fid,'%s\n','colormap jet(255); colorbar;');
fprintf(fid,'%s\n','caxis([-2 6]);');
fprintf(fid,'%s\n','drawnow');
fclose(fid);
fprintf(' Done.\n')
%========================================================================
% Functions
%========================================================================
function y = sph_cc(mu,phi,l,m)
% Complex conjugates of coefficients.
z = legendre(l,mu)'; ma = abs(m);
y = sqrt((2*l+1)/(4*pi).*factorial(l-ma)./factorial(l+ma)).*...
(-1).^max(m,0).*exp(1i*m*phi).*z(ma+1);