Skip to content

Latest commit

 

History

History
83 lines (61 loc) · 3.43 KB

README.md

File metadata and controls

83 lines (61 loc) · 3.43 KB

VoVNet.DeepLabV3

This is a pytorch implementation of DeepLabV3 with VoVNet Backbone Networks. This code based on pytorch implementation of DeepLabV3.pytorch.

Highlights

  • Memory efficient
  • Better performance
  • Faster speed

Comparison with ResNet & DenseNet backbones

  • For fair comparison, totally SAME training setup except for backbone
  • 50 epoch
  • 0.007 base_lr
  • 16 batch size
  • same ASSP module & parameters
  • V100 GPU
  • pytorch 1.1.0a0+3752916
  • CUDA v10
  • cuDnn v7.3
Backbone mIoU inference time (ms) Memory usage (MB) Energy Efficiency (J/frame) DOWNLOAD
ResNet-50 74.27 24 2193 4.1 link
DenseNet-201 75.63 50 3945 7 link
VoV-39 75.71 19 1901 3.1 link
ResNet-101 76.81 32 2865 15.8 link
DenseNet-161 76.13 49 4523 8.3 link
VoV-57 77.4 25 2251 4.2 link

ImageNet pretrained weight

Preparation

git clone https://github.com/stigma0617/VoVNet-DeepLabV3.git
cd VoVNet-DeepLabV3

mkdir -p data/pretrained
cd data/pretrained
wget https://www.dropbox.com/s/b826phjle6kbamu/vovnet57_statedict_norm.pth
wget https://www.dropbox.com/s/s7f4vyfybyc9qpr/vovnet39_statedict_norm.pth

PASCAL VOC 2012 Dataset

cd ~/VoVNet-DeeplabV3/data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_11-May-2012.tar
cd VOCdevkit/VOC2012/
wget http://cs.jhu.edu/~cxliu/data/SegmentationClassAug.zip
wget http://cs.jhu.edu/~cxliu/data/SegmentationClassAug_Visualization.zip
wget http://cs.jhu.edu/~cxliu/data/list.zip
unzip SegmentationClassAug.zip
unzip SegmentationClassAug_Visualization.zip
unzip list.zip

Training

Specifying a backbone network with --backbone,

For VoVNet-39, --backbone vovnet39

python main.py --train --exp bn_lr7e-3 --epochs 50 --base_lr 0.007 --backbone vovnet39

Evaluation

use the same command except delete --train

wget https://www.dropbox.com/s/oqqozntgrowmfb1/deeplab_vovnet39_pascal_v3_bn_lr7e-3_epoch50.pth -P data/
python main.py --exp bn_lr7e-3 --epochs 50 --base_lr 0.007 --backbone vovnet39