-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
201 lines (184 loc) · 7.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import pdb
from PIL import Image
from scipy.io import loadmat
from torch.autograd import Variable
from torchvision import transforms
import deeplab
from pascal import VOCSegmentation
from cityscapes import Cityscapes
from utils import AverageMeter, inter_and_union
parser = argparse.ArgumentParser()
parser.add_argument('--train', action='store_true', default=False,
help='training mode')
parser.add_argument('--exp', type=str, required=True,
help='name of experiment')
parser.add_argument('--gpu', type=int, default=0,
help='test time gpu device id')
parser.add_argument('--backbone', type=str, default='resnet101',
help='resnet101')
parser.add_argument('--dataset', type=str, default='pascal',
help='pascal or cityscapes')
parser.add_argument('--groups', type=int, default=None,
help='num of groups for group normalization')
parser.add_argument('--epochs', type=int, default=30,
help='num of training epochs')
parser.add_argument('--batch_size', type=int, default=16,
help='batch size')
parser.add_argument('--base_lr', type=float, default=0.00025,
help='base learning rate')
parser.add_argument('--last_mult', type=float, default=1.0,
help='learning rate multiplier for last layers')
parser.add_argument('--scratch', action='store_true', default=False,
help='train from scratch')
parser.add_argument('--freeze_bn', action='store_true', default=False,
help='freeze batch normalization parameters')
parser.add_argument('--weight_std', action='store_true', default=False,
help='weight standardization')
parser.add_argument('--beta', action='store_true', default=False,
help='resnet101 beta')
parser.add_argument('--crop_size', type=int, default=513,
help='image crop size')
parser.add_argument('--resume', type=str, default=None,
help='path to checkpoint to resume from')
parser.add_argument('--workers', type=int, default=4,
help='number of data loading workers')
args = parser.parse_args()
def main():
assert torch.cuda.is_available()
torch.backends.cudnn.benchmark = True
model_fname = 'data/deeplab_{0}_{1}_v3_{2}_epoch%d.pth'.format(
args.backbone, args.dataset, args.exp)
if args.dataset == 'pascal':
dataset = VOCSegmentation('data/VOCdevkit',
train=args.train, crop_size=args.crop_size)
elif args.dataset == 'cityscapes':
dataset = Cityscapes('data/cityscapes',
train=args.train, crop_size=args.crop_size)
else:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
# if args.backbone == 'resnet101':
# model = getattr(deeplab, 'resnet101')(
if 'resnet' or 'vovnet' or 'densenet' in args.backbone:
model = getattr(deeplab, args.backbone)(
pretrained=(not args.scratch),
num_classes=len(dataset.CLASSES),
num_groups=args.groups,
weight_std=args.weight_std,
beta=args.beta)
else:
raise ValueError('Unknown backbone: {}'.format(args.backbone))
if args.train:
criterion = nn.CrossEntropyLoss(ignore_index=255)
model = nn.DataParallel(model).cuda()
model.train()
if args.freeze_bn:
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False
if 'resnet' in args.backbone:
backbone_params = (
list(model.module.conv1.parameters()) +
list(model.module.bn1.parameters()) +
list(model.module.layer1.parameters()) +
list(model.module.layer2.parameters()) +
list(model.module.layer3.parameters()) +
list(model.module.layer4.parameters()))
elif 'vovnet' in args.backbone:
backbone_params = (
list(model.module.stem.parameters()) +
list(model.module.stage2.parameters())+
list(model.module.stage3.parameters())+
list(model.module.stage4.parameters())+
list(model.module.stage5.parameters()))
elif 'densenet' in args.backbone:
backbone_params = (
list(model.module.features.parameters()))
last_params = list(model.module.aspp.parameters())
optimizer = optim.SGD([
{'params': filter(lambda p: p.requires_grad, backbone_params)},
{'params': filter(lambda p: p.requires_grad, last_params)}],
lr=args.base_lr, momentum=0.9, weight_decay=0.0001)
dataset_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size, shuffle=args.train,
pin_memory=True, num_workers=args.workers)
max_iter = args.epochs * len(dataset_loader)
losses = AverageMeter()
start_epoch = 0
if args.resume:
if os.path.isfile(args.resume):
print('=> loading checkpoint {0}'.format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print('=> loaded checkpoint {0} (epoch {1})'.format(
args.resume, checkpoint['epoch']))
else:
print('=> no checkpoint found at {0}'.format(args.resume))
for epoch in range(start_epoch, args.epochs):
for i, (inputs, target) in enumerate(dataset_loader):
cur_iter = epoch * len(dataset_loader) + i
lr = args.base_lr * (1 - float(cur_iter) / max_iter) ** 0.9
optimizer.param_groups[0]['lr'] = lr
optimizer.param_groups[1]['lr'] = lr * args.last_mult
inputs = Variable(inputs.cuda())
target = Variable(target.cuda())
outputs = model(inputs)
loss = criterion(outputs, target)
if np.isnan(loss.item()) or np.isinf(loss.item()):
pdb.set_trace()
losses.update(loss.item(), args.batch_size)
loss.backward()
optimizer.step()
optimizer.zero_grad()
print('epoch: {0}\t'
'iter: {1}/{2}\t'
'lr: {3:.6f}\t'
'loss: {loss.val:.4f} ({loss.ema:.4f})'.format(
epoch + 1, i + 1, len(dataset_loader), lr, loss=losses))
if epoch % 10 == 9:
torch.save({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, model_fname % (epoch + 1))
else:
torch.cuda.set_device(args.gpu)
model = model.cuda()
model.eval()
checkpoint = torch.load(model_fname % args.epochs)
state_dict = {k[7:]: v for k, v in checkpoint['state_dict'].items() if 'tracked' not in k}
model.load_state_dict(state_dict)
cmap = loadmat('data/pascal_seg_colormap.mat')['colormap']
cmap = (cmap * 255).astype(np.uint8).flatten().tolist()
inter_meter = AverageMeter()
union_meter = AverageMeter()
for i in range(len(dataset)):
inputs, target = dataset[i]
inputs = Variable(inputs.cuda())
outputs = model(inputs.unsqueeze(0))
_, pred = torch.max(outputs, 1)
pred = pred.data.cpu().numpy().squeeze().astype(np.uint8)
mask = target.numpy().astype(np.uint8)
imname = dataset.masks[i].split('/')[-1]
mask_pred = Image.fromarray(pred)
mask_pred.putpalette(cmap)
mask_pred.save(os.path.join('data/val', imname))
print('eval: {0}/{1}'.format(i + 1, len(dataset)))
inter, union = inter_and_union(pred, mask, len(dataset.CLASSES))
inter_meter.update(inter)
union_meter.update(union)
iou = inter_meter.sum / (union_meter.sum + 1e-10)
for i, val in enumerate(iou):
print('IoU {0}: {1:.2f}'.format(dataset.CLASSES[i], val * 100))
print('Mean IoU: {0:.2f}'.format(iou.mean() * 100))
if __name__ == "__main__":
main()