forked from seth814/Semantic-Shapes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
36 lines (27 loc) · 1.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
from tensorflow.keras.callbacks import ModelCheckpoint
from data_generator import DataGenerator
from tensorboard_callbacks import TrainValTensorBoard, TensorBoardMask
from utils import generate_missing_json
from config import model_name, n_classes
from models import unet, fcn_8
def sorted_fns(dir):
return sorted(os.listdir(dir), key=lambda x: int(x.split('.')[0]))
if len(os.listdir('images')) != len(os.listdir('annotated')):
generate_missing_json()
image_paths = [os.path.join('images', x) for x in sorted_fns('images')]
annot_paths = [os.path.join('annotated', x) for x in sorted_fns('annotated')]
if 'unet' in model_name:
model = unet(pretrained=False, base=4)
elif 'fcn_8' in model_name:
model = fcn_8(pretrained=False, base=4)
tg = DataGenerator(image_paths=image_paths, annot_paths=annot_paths,
batch_size=5, augment=True)
checkpoint = ModelCheckpoint(os.path.join('models', model_name+'.model'), monitor='dice', verbose=1, mode='max',
save_best_only=True, save_weights_only=False, period=10)
train_val = TrainValTensorBoard(write_graph=True)
tb_mask = TensorBoardMask(log_freq=10)
model.fit_generator(generator=tg,
steps_per_epoch=len(tg),
epochs=500, verbose=1,
callbacks=[checkpoint, train_val, tb_mask])