-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpca.py
137 lines (111 loc) · 3.42 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from dataset.attributes import Attributes
from dataset.sampling import sample
from reduction_plot import DRType, dr_plot_2d, dr_plot_3d
attr = Attributes()
def pca_weather_plot(percentage, dim):
df = sample(percentage)
# Weather
dff = df[attr.get_weather_attributes()]
data_size = dff.shape[0]
scaler = StandardScaler()
scaler.fit(dff)
scaled_data = scaler.transform(dff)
if dim == '2D':
pca = PCA(n_components=2)
pca.fit(scaled_data)
x_pca = pca.transform(scaled_data)
return dr_plot_2d(
df,
x_pca[:, 0],
x_pca[:, 1],
Attributes.temperature,
f"Principal Component Analysis | Size {data_size}",
attr.get_hover_data_for_weather(),
DRType.PCA
)
elif dim == '3D':
pca = PCA(n_components=3)
pca.fit(scaled_data)
x_pca = pca.transform(scaled_data)
return dr_plot_3d(
df,
x_pca[:, 0],
x_pca[:, 1],
x_pca[:, 2],
Attributes.temperature,
f"Principal Component Analysis | Size {data_size}",
attr.get_hover_data_for_weather(),
DRType.PCA
)
def pca_electric_plot(percentage, dim):
df = sample(percentage)
# Appliance
dff = df[attr.get_appliance_attributes()]
data_size = dff.shape[0]
scaler = StandardScaler()
scaler.fit(dff)
scaled_data = scaler.transform(dff)
if dim == '2D':
pca = PCA(n_components=2)
pca.fit(scaled_data)
x_pca = pca.transform(scaled_data)
return dr_plot_2d(
df,
x_pca[:, 0],
x_pca[:, 1],
Attributes.total_energy_consumption,
f"Principal Component Analysis | Size {data_size}",
attr.get_hover_data_for_electric(),
DRType.PCA
)
elif dim == '3D':
pca = PCA(n_components=3)
pca.fit(scaled_data)
x_pca = pca.transform(scaled_data)
return dr_plot_3d(
df,
x_pca[:, 0],
x_pca[:, 1],
x_pca[:, 2],
Attributes.total_energy_consumption,
f"Principal Component Analysis | Size {data_size}",
attr.get_hover_data_for_electric(),
DRType.PCA
)
def pca_all_plot(percentage, dim):
df = sample(percentage)
# All
dff = df[attr.all_attributes()]
data_size = dff.shape[0]
scaler = StandardScaler()
scaler.fit(dff)
scaled_data = scaler.transform(dff)
if dim == '2D':
pca = PCA(n_components=2)
pca.fit(scaled_data)
x_pca = pca.transform(scaled_data)
return dr_plot_2d(
df,
x_pca[:, 0],
x_pca[:, 1],
Attributes.temperature,
f"Principal Component Analysis | Size {data_size}",
attr.get_hover_data_for_all(),
DRType.PCA
)
elif dim == '3D':
pca = PCA(n_components=3)
pca.fit(scaled_data)
x_pca = pca.transform(scaled_data)
return dr_plot_3d(
df,
x_pca[:, 0],
x_pca[:, 1],
x_pca[:, 2],
Attributes.total_energy_consumption,
f"Principal Component Analysis | Size {data_size}",
attr.get_hover_data_for_all(),
DRType.PCA
)