-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLinearRegression_BOSTON_Dataset.py
65 lines (39 loc) · 1.42 KB
/
LinearRegression_BOSTON_Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Import Dependencies
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets,linear_model,metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# Load the Boston dataset
boston=datasets.load_boston()
# X - feature vectors
# y - Target values
X=boston.data
y=boston.target
# splitting X and y into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,
random_state=1)
# Create linear regression objest
lin_reg=linear_model.LinearRegression()
# Train the model using trai and test data
lin_reg.fit(X_train,y_train)
# Presict values for X_test data
predicted = lin_reg.predict(X_test)
# Regression coefficients
print('Coefficients are:\n',lin_reg.coef_)
# Intecept
print('\nIntercept : ',lin_reg.intercept_)
# variance score: 1 means perfect prediction
print('Variance score: ',lin_reg.score(X_test, y_test))
# Mean Squared Erroe
print("Mean squared error: %.2f"
% mean_squared_error(y_test, predicted))
# Original data of X_test
expected = y_test
# Plot a graph for expected and predicted values
plt.title('ActualPrice Vs PredictedPrice (BOSTON Housing Dataset)')
plt.scatter(expected,predicted,c='b',marker='.',s=36)
plt.plot([0, 50], [0, 50], '--r')
plt.xlabel('Actual Price(1000$)')
plt.ylabel('Predicted Price(1000$)')
plt.show()