forked from CADLabs/ethereum-economic-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstochastic_processes.py
81 lines (66 loc) · 2.62 KB
/
stochastic_processes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""
Helper functions to generate stochastic environmental processes
"""
import numpy as np
from stochastic import processes
import experiments.simulation_configuration as simulation
from experiments.utils import rng_generator
def create_eth_price_process(
timesteps=simulation.TIMESTEPS,
dt=simulation.DELTA_TIME,
rng=np.random.default_rng(1),
minimum_eth_price=1500,
):
"""Configure environmental ETH price process
> A Brownian excursion is a Brownian bridge from (0, 0) to (t, 0) which is conditioned to be non-negative on the interval [0, t].
See https://stochastic.readthedocs.io/en/latest/continuous.html
"""
process = processes.continuous.BrownianExcursion(t=(timesteps * dt), rng=rng)
samples = process.sample(timesteps * dt + 1)
maximum_eth_price = max(samples)
samples = [
minimum_eth_price + eth_price_sample / maximum_eth_price * minimum_eth_price
for eth_price_sample in samples
]
return samples
def create_validator_process(
timesteps=simulation.TIMESTEPS,
dt=simulation.DELTA_TIME,
rng=np.random.default_rng(1),
validator_adoption_rate=4,
):
"""Configure environmental validator staking process
> A Poisson process with rate lambda is a count of occurrences of i.i.d. exponential random variables with mean 1/lambda. This class generates samples of times for which cumulative exponential random variables occur.
See https://stochastic.readthedocs.io/en/latest/continuous.html
"""
process = processes.continuous.PoissonProcess(
rate=1 / validator_adoption_rate, rng=rng
)
samples = process.sample(timesteps * dt + 1)
samples = np.diff(samples)
samples = [int(sample) for sample in samples]
return samples
def create_stochastic_process_realizations(
process,
timesteps=simulation.TIMESTEPS,
dt=simulation.DELTA_TIME,
runs=5,
):
"""Create stochastic process realizations
Using the stochastic processes defined in `processes` module, create random number generator (RNG) seeds,
and use RNG to pre-generate samples for number of simulation timesteps.
"""
switcher = {
"eth_price_samples": [
create_eth_price_process(timesteps=timesteps, dt=dt, rng=rng_generator())
for _ in range(runs)
],
"validator_samples": [
create_validator_process(timesteps=timesteps, dt=dt, rng=rng_generator())
for _ in range(runs)
],
"validator_uptime_samples": [
rng_generator().uniform(0.96, 0.99, timesteps * dt + 1) for _ in range(runs)
],
}
return switcher.get(process, "Invalid Process")